Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Photophysical and Electrochemical Properties of Pyrimidopteridine‐Based Organic Photoredox Catalysts

2021, Taeufer, Tobias, Argüello Cordero, Miguel A., Petrosyan, Andranik, Surkus, Annette‐E., Lochbrunner, Stefan, Pospech, Jola

Herein we describe the synthesis and photophysical and electrochemical characterization of pyrimidopteridine-based photoredox catalysts. The pyrimidopteridines can be obtained from the corresponding N-oxides through photo-mediated oxygen atom transfer to a sacrificial acceptor molecule on gramscale. The presence of a triplet excited state was evidenced by means of transient absorption spectroscopy. Pyrimidopteridines are potent excited state oxidants with excited state reduction potentials exceeding +2.10 V vs. SCE in MeCN. The catalytic activity is illustrated in the photo-mediated oxidative annulation of 2-phenylbenzoic acid.

Loading...
Thumbnail Image
Item

Site-Selective Real-Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using L-Edge X-Ray Absorption Spectroscopy

2021, Britz, Alexander, Bokarev, Sergey I., Assefa, Tadesse A., Bajnóczi, Èva G., Németh, Zoltán, Vankó, György, Rockstroh, Nils, Junge, Henrik, Beller, Matthias, Doumy, Gilles, March, Anne Marie, Southworth, Stephen H., Lochbrunner, Stefan, Kühn, Oliver, Bressler, Christian, Gawelda, Wojciech

Time-resolved X-ray absorption spectroscopy has been utilized to monitor the bimolecular electron transfer in a photocatalytic water splitting system. This has been possible by uniting the local probe and element specific character of X-ray transitions with insights from high-level ab initio calculations. The specific target has been a heteroleptic [IrIII (ppy)2 (bpy)]+ photosensitizer, in combination with triethylamine as a sacrificial reductant and Fe3(CO)12 as a water reduction catalyst. The relevant molecular transitions have been characterized via high-resolution Ir L-edge X-ray absorption spectroscopy on the picosecond time scale and restricted active space self-consistent field calculations. The presented methods and results will enhance our understanding of functionally relevant bimolecular electron transfer reactions and thus will pave the road to rational optimization of photocatalytic performance.

Loading...
Thumbnail Image
Item

A chemical reaction controlled by light-activated molecular switches based on heterocyclopentanediyls

2019, Bresien, Jonas, Kröger-Badge, Thomas, Lochbrunner, Stefan, Michalik, Dirk, Müller, Henrik, Schulz, Axel, Zander, Edgar

Molecular switches are molecules that can reversibly be shifted between at least two stable states with different physical and chemical properties, making them interesting for application as chemical sensors or molecular machines. We recently discovered that five-membered, cyclic biradicals based on group 15 elements are efficient and robust photochemical switches that can be activated by red light. The quantum yield of the photo-isomerization is as high as 24.6%, and the thermal equilibration of the photo-activation product proceeds rapidly at ambient temperature. The fully reversible process was studied by experimental and high-level ab initio techniques. We could further demonstrate that the biradical character could be completely turned on and off, so the system could be applied to control chemical equilibria that involve activation products of the cyclic biradicals. © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Two-photon, visible light water splitting at a molecular ruthenium complex

2021, Schneidewind, Jacob, Argüello Cordero, Miguel A., Junge, Henrik, Lochbrunner, Stefan, Beller, Matthias

Water splitting to give molecular oxygen and hydrogen or the corresponding protons and electrons is a fundamental four-electron redox process, which forms the basis of photosynthesis and is a promising approach to convert solar into chemical energy. Artificial water splitting systems have struggled with orchestrating the kinetically complex absorption of four photons as well as the difficult utilization of visible light. Based on a detailed kinetic, spectroscopic and computational study of Milstein's ruthenium complex, we report a new mechanistic paradigm for water splitting, which requires only two photons and offers a new method to extend the range of usable wavelengths far into the visible region. We show that two-photon water splitting is enabled by absorption of the first, shorter wavelength photon, which produces an intermediate capable of absorbing the second, longer wavelength photon (up to 630 nm). The second absorption then causes O–O bond formation and liberation of O2. Theoretical modelling shows that two-photon water splitting can be used to achieve a maximum solar-to-hydrogen efficiency of 18.8%, which could be increased further to 28.6% through photochemical instead of thermal H2 release. It is therefore possible to exceed the maximum efficiency of dual absorber systems while only requiring a single catalyst. Due to the lower kinetic complexity, intrinsic utilization of a wide wavelength range and high-performance potential, we believe that this mechanism will inspire the development of a new class of water splitting systems that go beyond the reaction blueprint of photosynthesis.