Search Results

Now showing 1 - 2 of 2
  • Item
    Benzoyl side-chains push the open-circuit voltage of PCDTBT/PCBM solar cells beyond 1 V
    (Amsterdam [u.a.] : Elsevier Science, 2017) Lombeck, Florian; Müllers, Stefan; Komber, Hartmut; Menke, S. Matthew; Pearson, Andrew J.; Conaghan, Patrick J.; McNeill, Christopher R.; Friend, Richard H.; Sommer, Michael
    The synthesis, characterization and solar cell performance of PCDTBT and its highly soluble analogue hexyl-PCDTBT with cross-conjugated benzoyl moieties at the carbazole comonomer are presented. Through the use of both model reactions and time-controlled microwave-assisted Suzuki polycondensation, the base-induced cleavage of the benzoyl group from the polymer backbone has been successfully suppressed. Compared to the commonly used symmetrically branched alkyl motif, the benzoyl substituent lowers the energy levels of PCDTBT as well as the band gap, and consequently increases energy of the charge transfer state in blends with PC71BM. As a result, photovoltaic diodes with high-open circuit voltage of above 1 V are realized.
  • Item
    High molecular weight mechanochromic spiropyran main chain copolymers via reproducible microwave-assisted Suzuki polycondensation
    (Cambridge : RSC Publ., 2015) Metzler, Lukas; Reichenbach, Thomas; Brügner, Oliver; Komber, Hartmut; Lombeck, Florian; Müllers, Stefan; Hanselmann, Ralf; Hillebrecht, Harald; Walter, Michael; Sommer, Michael
    Suzuki–Miyaura polycondensation (SPC) is widely used to prepare a variety of copolymers for a broad range of applications. Although SPC protocols are often used in many instances, the limits of this method and issues of molecular weight reproducibility are not often looked at in detail. By using a spiropyran-based (SP) mechanochromic copolymer, we present an optimized protocol for the microwave-assisted synthesis of a mechanochromic, alternating copolymer P(SP-alt-C10) via SPC that allows the reproduction of molecular weight distributions. Several parameters such as microwave power, temperature, stoichiometry, and ligand are screened, leading to molecular weights up to Mw ∼ 174 kg mol−1. The process of optimization is guided by NMR end group analysis which shows that dehalogenation, oxidative deborylation and SP cleavage are the limiting factors that impede further increase of molar mass, while other classical side reactions such as protiodeborylation are not observed. Embossing films of P(SP-alt-C10) yields the colored merocyanine (MC) copolymer P(MC-alt-C10) that undergoes a thermally facilitated back reaction to P(SP-alt-C10). DFT suggests that the barrier of the SP → MC transition has two contributions, with the first one being related to the color change and the second one to internal bond reorganizations. The barrier height is 1.5 eV, which suggests that the ease of the thermally facilitated back reaction is either due to residual energy stored in the deformed polymer matrix, or arises from an MC isomer that is not in the thermodynamically most stable state.