Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Plasma-Assisted Immobilization of a Phosphonium Salt and Its Use as a Catalyst in the Valorization of CO2

2020, Hu, Yuya, Peglow, Sandra, Longwitz, Lars, Frank, Marcus, Epping, Jan Dirk, Breser, Volker, Werner, Thomas

The first plasma-assisted immobilization of an organocatalyst, namely a bifunctional phosphonium salt in an amorphous hydrogenated carbon coating, is reported. This method makes the requirement for prefunctionalized supports redundant. The immobilized catalyst was characterized by solid-state 13C and 31P NMR spectroscopy, SEM, and energy-dispersive X-ray spectroscopy. The immobilized catalyst (1 mol %) was employed in the synthesis of cyclic carbonates from epoxides and CO2. Notably, the efficiency of the plasma-treated catalyst on SiO2 was higher than those of the SiO2 support impregnated with the catalyst and even the homogeneous counterpart. After optimization of the reaction conditions, 13 terminal and four internal epoxides were converted with CO2 to the respective cyclic carbonates in yields of up to 99 %. Furthermore, the possibility to recycle the immobilized catalyst was evaluated. Even though the catalyst could be reused, the yields gradually decreased from the third run. However, this is the first example of the recycling of a plasma-immobilized catalyst, which opens new possibilities in the recovery and reuse of catalysts. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Reduction of Activated Alkenes by PIII/PV Redox Cycling Catalysis

2019, Longwitz, Lars, Werner, Thomas

The carbon–carbon double bond of unsaturated carbonyl compounds was readily reduced by using a phosphetane oxide catalyst in the presence of a simple organosilane as the terminal reductant and water as the hydrogen source. Quantitative hydrogenation was observed when 1.0 mol % of a methyl-substituted phosphetane oxide was employed as the catalyst. The procedure is highly selective towards activated double bonds, tolerating a variety of functional groups that are usually prone to reduction. In total, 25 alkenes and two alkynes were hydrogenated to the corresponding alkanes in excellent yields of up to 99 %. Notably, less active poly(methylhydrosiloxane) could also be utilized as the terminal reductant. Mechanistic investigations revealed the phosphane as the catalyst resting state and a protonation/deprotonation sequence as the crucial step in the catalytic cycle. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

AMPA-15N - Synthesis and application as standard compound in traceable degradation studies of glyphosate

2021, Wirth, Marisa A., Longwitz, Lars, Kanwischer, Marion, Gros, Peter, Leinweber, Peter, Werner, Thomas

Stable isotope labeling of pollutants is a valuable tool to investigate their environmental transport and degradation. For the globally most frequently used herbicide glyphosate, such studies have, so far, been hampered by the absence of an analytical standard for its labeled metabolite AMPA-15N, which is formed during the degradation of all commercially available glyphosate isotopologues. Without such a standard, detection and quantitation of AMPA-15N, e.g. with LC-MS/MS, is not possible. Therefore, a synthetic pathway to AMPA-15N from benzamide-15N via the hemiaminal was developed. AMPA-15N was obtained in sufficient yield and purity to be used as a standard compound for LC-MS/MS analysis. Suitable MS-detection settings as well as a calibration using the internal standard (IS) approach were established for Fmoc-derivatized AMPA-15N. The use of different AMPA isotopologues as IS was complicated by the parallel formation of [M+H]+ and [M]+• AMPA-Fmoc precursor ions in ESI-positive mode, causing signal interferences between analyte and IS. We recommend the use of either AMPA-13C-15N, AMPA-13C-15N-D2 or a glyphosate isotopologue as IS, as they do not affect the linearity of the calibration curve. As a proof of concept, the developed analysis procedure for AMPA-15N was used to refine the results from a field lysimeter experiment investigating leaching and degradation of glyphosate-2-13C-15N. The newly enabled quantitation of AMPA-15N in soil extracts showed that similar amounts (0.05 - 0.22 mg·kg-1) of the parent herbicide glyphosate and its primary metabolite AMPA persisted in the topsoil over the study period of one year, while vertical transport through the soil column did not occur for either of the compounds. The herein developed analysis concepts will facilitate future design and execution of experiments on the environmental fate of the herbicide glyphosate.