Search Results

Now showing 1 - 2 of 2
  • Item
    Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections
    (Weinheim : Wiley-VCH Verlag, 2020) Ho, D.-K.; Murgia, X.; De Rossi, C.; Christmann, R.; Hüfner de Mello Martins, A.G.; Koch, M.; Andreas, A.; Herrmann, J.; Müller, R.; Empting, M.; Hartmann, R.W.; Desmaele, D.; Loretz, B.; Couvreur, P.; Lehr, C.-M.
    Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
  • Item
    Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane
    (Cambridge : Royal Society of Chemistry, 2015) Dandekar, P.; Jain, R.; Keil, M.; Loretz, B.; Koch, Marcus; Wenz, G.; Lehr, Claus-Michael
    Ideal cationic polymers for siRNA delivery could result in its enhanced cellular internalization, escape from endosomal degradation, and rapid release in cell cytoplasm, to facilitate knockdown of the target gene. In this study, we have investigated the ability of an in-house synthesized cationic polyrotaxane to bind siRNA into nanometric complexes. This polymer, which had earlier shown improved transfection of model siRNA (luciferase), was used to improve the cellular internalization of the siRNA molecule with therapeutic implications. In cellular assays, the polymer enhanced the knockdown of a gene involved in the pathogenesis of tuberculosis, when the nanocomplexes were compared with free siRNA. The efficacy and cellular non-toxicity of this polymer encourage its further exploitation in animal models of tuberculosis and other intracellular bacterial infections.