Search Results

Now showing 1 - 5 of 5
  • Item
    Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Hennes, M.; Lotnyk, A.; Mayr, S.G.
    Magnetically anisotropic as well as magnetic core-shell nanoparticles (CS-NPs) with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core-shell nanoparticles, which relies on (optionally pulsed) DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed.
  • Item
    Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing
    (Amsterdam [u.a.] : Elsevier, 2014) Ehrhardt, M.; Lorenz, P.; Lotnyk, A.; Romanus, H.; Thelander, E.; Zimmer, K.
    Laser embossing allows the micron and submicron patterning of metal substrates that is of great interest in a wide range of applications. This replication process enables low-cost patterning of metallic materials by non-thermal, high-speed forming which is driven by laser-induced shock waves. In this study the surface topography characteristics as well as the material structure at laser embossing of sub-micrometre gratings into solid copper is presented. The topography of the laser-embossed copper pattern is analysed with atomic force microscopy (AFM) in comparison to the master surface. The height of the embossed structures and the replicated pattern fidelity increases up to a laser fluence of F ∼ 10 J/cm2. For higher laser fluences the height of the embossed structures saturates at 75% of the master pattern height and the shape is adequate to the master. Structural modifications in the copper mono crystals after the laser embossing process were investigated with transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Almost no modifications were detected. The residual stress after laser embossing of 32 MPa (F = 30 J/cm2) has only a limited influence on the surface pattern formation.
  • Item
    Phase change thin films for non-volatile memory applications
    (Cambridge : Royal Society of Chemistry, 2019) Lotnyk, A.; Behrens, M.; Rauschenbach, B.
    The rapid development of Internet of Things devices requires real time processing of a huge amount of digital data, creating a new demand for computing technology. Phase change memory technology based on chalcogenide phase change materials meets many requirements of the emerging memory applications since it is fast, scalable and non-volatile. In addition, phase change memory offers multilevel data storage and can be applied both in neuro-inspired and all-photonic in-memory computing. Furthermore, phase change alloys represent an outstanding class of functional materials having a tremendous variety of industrially relevant characteristics and exceptional material properties. Many efforts have been devoted to understanding these properties with the particular aim to design universal memory. This paper reviews materials science aspects of chalcogenide-based phase change thin films relevant for non-volatile memory applications. Particular emphasis is put on local structure, control of disorder and its impact on material properties, order-disorder transitions and interfacial transformations. © 2019 The Royal Society of Chemistry.
  • Item
    Ion-irradiation-assisted tuning of phase transformations and physical properties in single crystalline Fe7Pd3ferromagnetic shape memory alloy thin films
    ([London] : IOP, 2015) Arabi-Hashemi, A.; Witte, R.; Lotnyk, A.; Brand, R.A.; Setzer, A.; Esquinazi, P.; Hahn, H.; Averback, R.S.; Mayr, S.G.
    Control of multi-martensite phase transformations and physical properties constitute greatly unresolved challenges in Fe7Pd3-based ferromagnetic shape memory alloys. Single crystalline Fe7Pd3 thin films reveal an austenite to martensite phase transformation, continuously ranging from the face-centered cubic (fcc) to the face-centered tetragonal (fct) and body-centered cubic (bcc) phases upon irradiation with 1.8 MeV Kr+ ions. Within the present contribution, we explore this scenario within a comprehensive experimental study: employing atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM), we first clarify the crystallography of the ion-irradiation-induced austenite $\Rightarrow $ martensite and inter-martensite transitions, explore the multi-variant martensite structures with c-a twinning and unravel a very gradual transition between variants at twin boundaries. Accompanying magnetic properties, addressed locally and globally, are characterized by an increasing saturation magnetization from fcc to bcc, while coercivity and remanence are demonstrated to be governed by magnetocrystalline anisotropy and ion-irradiation-induced defect density, respectively. Based on reversibility of ion-irradiation-induced materials changes due to annealing treatment and a conversion electron Mößbauer spectroscopy (CEMS) study to address changes in order, a quantitative defect-based physical picture of ion-irradiation-induced austenite ⇔ martensite transformation in Fe7Pd3 is developed. The presented concepts thus pave the way for ion-irradiation-assisted optimization strategies for tailored functional alloys.
  • Item
    Glancing angle deposition of sculptured thin metal films at room temperature
    (Bristol : IOP Publ., 2017-9-1) Liedtke, S.; Grüner, C.; Lotnyk, A.; Rauschenbach, B.
    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.