Search Results

Now showing 1 - 5 of 5
  • Item
    Biaxially Textured Titanium Thin Films by Oblique Angle Deposition: Conditions and Growth Mechanisms
    (Weinheim : Wiley-VCH, 2020) Liedtke-Grüner, Susann; Grüner, Christoph; Lotnyk, Andriy; Gerlach, Juergen W.; Rauschenbach, Bernd
    Growing highly crystalline nanowires over large substrate areas remains an ambiguous task nowadays. Herein, a time-efficient and easy-to-handle bottom-up approach is demonstrated that enables the self-assembled growth of biaxially textured Ti thin films composed of single-crystalline nanowires in a single-deposition step. Ti thin films are deposited under highly oblique incidence angles by electron beam evaporation on amorphous substrates. Substrate temperature, angle of the incoming particle flux, and working pressure are varied to optimize the crystallinity in those films. Height-resolved structure information of individual nanowires is provided by a transmission electron microscopy (TEM) nanobeam, high-resolution TEM, and electron diffraction. Ti nanowires are polycrystalline at 77 K, whereas for ≥300 K, single-crystalline nanowires are tendentially found. The Ti crystals grow along the thermodynamically favored c-direction, but the nanowires’ tilt angle is determined by shadowing. Biaxially textured Ti thin films require a certain temperature range combined with highly oblique deposition angles, which is proved by X-ray in-plane pole figures. A general correlation between average activation energy for surface self-diffusion and melting point of metals is given to estimate the significant influence of surface self-diffusion on the evolution of obliquely deposited metal thin films.
  • Item
    Compositional Patterning in Carbon Implanted Titania Nanotubes
    (Weinheim : Wiley-VCH, 2021) Kupferer, Astrid; Holm, Alexander; Lotnyk, Andriy; Mändl, Stephan; Mayr, Stefan G.
    Ranging from novel solar cells to smart biosensors, titania nanotube arrays constitute a highly functional material for various applications. A promising route to modify material characteristics while preserving the amorphous nanotube structure is present when applying low-energy ion implantation. In this study, the interplay of phenomenological effects observed upon implantation of low fluences in the unique 3D structure is reported: sputtering versus readsorption and plastic flow, amorphization versus crystallization and compositional patterning. Patterning within the oxygen and carbon subsystem is revealed using transmission electron microscopy. By applying a Cahn–Hilliard approach within the framework of driven alloys, characteristic length scales are derived and it is demonstrated that compositional patterning is expected on free enthalpy grounds, as predicted by density functional theory based ab initio calculations. Hence, an attractive material with increased conductivity for advanced devices is provided. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures
    (London : Nature Publishing Group, 2016) Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd
    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous–crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature.
  • Item
    Strongly enhanced and tunable photovoltaic effect in ferroelectric-paraelectric superlattices
    (Washington, DC [u.a.] : Assoc., 2021) Yun, Yeseul; Mühlenbein, Lutz; Knoche, David S.; Lotnyk, Andriy; Bhatnagar, Akash
    Ever since the first observation of a photovoltaic effect in ferroelectric BaTiO3, studies have been devoted to analyze this effect, but only a few attempted to engineer an enhancement. In conjunction, the steep progress in thin-film fabrication has opened up a plethora of previously unexplored avenues to tune and enhance material properties via growth in the form of superlattices. In this work, we present a strategy wherein sandwiching a ferroelectric BaTiO3 in between paraelectric SrTiO3 and CaTiO3 in a superlattice form results in a strong and tunable enhancement in photocurrent. Comparison with BaTiO3 of similar thickness shows the photocurrent in the superlattice is 103 times higher, despite a nearly two-thirds reduction in the volume of BaTiO3. The enhancement can be tuned by the periodicity of the superlattice, and persists under 1.5 AM irradiation. Systematic investigations highlight the critical role of large dielectric permittivity and lowered bandgap.
  • Item
    Crystallization of Ge2Sb2Te5 thin films by nano- and femtosecond single laser pulse irradiation
    (London : Nature Publishing Group, 2016) Sun, Xinxing; Ehrhardt, Martin; Lotnyk, Andriy; Lorenz, Pierre; Thelander, Erik; Gerlach, Jürgen W.; Smausz, Tomi; Decker, Ulrich; Rauschenbach, Bernd
    The amorphous to crystalline phase transformation of Ge2Sb2Te5 (GST) films by UV nanosecond (ns) and femtosecond (fs) single laser pulse irradiation at the same wavelength is compared. Detailed structural information about the phase transformation is collected by x-ray diffraction and high resolution transmission electron microscopy (TEM). The threshold fluences to induce crystallization are determined for both pulse lengths. A large difference between ns and fs pulse irradiation was found regarding the grain size distribution and morphology of the crystallized films. For fs single pulse irradiated GST thin films, columnar grains with a diameter of 20 to 60 nm were obtained as evidenced by cross-sectional TEM analysis. The local atomic arrangement was investigated by highresolution Cs-corrected scanning TEM. Neither tetrahedral nor off-octahedral positions of Ge-atoms could be observed in the largely defect-free grains. A high optical reflectivity contrast (~25%) between amorphous and completely crystallized GST films was achieved by fs laser irradiation induced at fluences between 13 and 16 mJ/cm2 and by ns laser irradiation induced at fluences between 67 and 130 mJ/cm2. Finally, the fluence dependent increase of the reflectivity is discussed in terms of each photon involved into the crystallization process for ns and fs pulses, respectively.