Search Results

Now showing 1 - 7 of 7
  • Item
    How tight are the limits to land and water use? - Combined impacts of food demand and climate change
    (München : European Geopyhsical Union, 2005) Lotze-Campen, H.; Lucht, W.; Müller, C.; Bondeau, A.; Smith, P.
    In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on regional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be expanded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system.
  • Item
    Farmers’ perspectives: Impact of climate change on African indigenous vegetable production in Kenya
    (Bingley : Emerald Group Publishing Ltd., 2018) Chepkoech, W.; Mungai, N.W.; Stöber, S.; Bett, H.K.; Lotze-Campen, H.
    Purpose: Understanding farmers’ perceptions of how the climate is changing is vital to anticipating its impacts. Farmers are known to take appropriate steps to adapt only when they perceive change to be taking place. This study aims to analyse how African indigenous vegetable (AIV) farmers perceive climate change in three different agro-climatic zones (ACZs) in Kenya, identify the main differences in historical seasonal and annual rainfall and temperature trends between the zones, discuss differences in farmers’ perceptions and historical trends and analyse the impact of these perceived changes and trends on yields, weeds, pests and disease infestation of AIVs. Design/methodology/approach: Data collection was undertaken in focus group discussions (FGD) (N = 211) and during interviews with individual farmers (N = 269). The Mann–Kendall test and regression were applied for trend analysis of time series data (1980-2014). Analysis of variance and least significant difference were used to test for differences in mean rainfall data, while a chi-square test examined the association between farmer perceptions and ACZs. Coefficient of variation expressed as a percentage was used to show variability in mean annual and seasonal rainfall between the zones. Findings: Farmers perceived that higher temperatures, decreased rainfall, late onset and early retreat of rain, erratic rainfall patterns and frequent dry spells were increasing the incidences of droughts and floods. The chi-square results showed a significant relationship between some of these perceptions and ACZs. Meteorological data provided some evidence to support farmers’ perceptions of changing rainfall. No trend was detected in mean annual rainfall, but a significant increase was recorded in the semi-humid zone. A decreasing maximum temperature was noted in the semi-humid zone, but otherwise, an overall increase was detected. There were highly significant differences in mean annual rainfall between the zones. Farmers perceived reduced yields and changes in pest infestation and diseases in some AIVs to be prevalent in the dry season. This study’s findings provide a basis for local and timely institutional changes, which could certainly help in reducing the adverse effects of climate change. Originality/value: This is an original research paper and the historical trends, farmers’ perceptions and effects of climate change on AIV production documented in this paper may also be representative of other ACZs in Kenya.
  • Item
    Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade
    (Chichester : John Wiley and Sons Ltd, 2011) Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W.
    The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5° resolution the amount of blue and green water (irrigation and precipitation water) needed to produce one unit of crop yield, for 11 of the world's major crop types. Based on these, we also quantify the agricultural water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints shows that green water globally dominates both the internal and external WFP (84 % of the global WFP and 94 % of the external WFP rely on green water). While no country ranks among the top ten with respect to all water footprints calculated here, Pakistan and Iran demonstrate high absolute and per capita blue WFP, and the US and India demonstrate high absolute green and blue WFPs. The external WFPs are relatively small (6 % of the total global blue WFP, 16 % of the total global green WFP). Nevertheless, current trade of the products considered here saves significant water volumes and land areas (∼263 km3 and ∼41 Mha, respectively, equivalent to 5 % of the sowing area of the considered crops and 3.5 % of the annual precipitation on this area). Relating the proportions of external to internal blue/green WFP to the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above-average WFPs. Thus, countries with high per capita water consumption affect mainly the water availability in their own country. Finally, this study finds that flows/savings of both virtual water and virtual land need to be analysed together, since they are intrinsically related.
  • Item
    N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios
    (München : European Geopyhsical Union, 2012) Bodirsky, B.L.; Popp, A.; Weindl, I.; Dietrich, J.P.; Rolinski, S.; Scheiffele, L.; Schmitz, C.; Lotze-Campen, H.
    Reactive nitrogen (Nr) is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O) emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required.
  • Item
    MAgPIE 4-a modular open-source framework for modeling global land systems
    (Göttingen : Copernicus GmbH, 2019) Dietrich, J.P.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.; Stevanović, M.; Karstens, K.; Kreidenweis, U.; Wang, X.; Mishra, A.; Klein, D.; Ambrósio, G.; Araujo, E.; Yalew, A.W.; Baumstark, L.; Wirth, S.; Giannousakis, A.; Beier, F.; Meng-Chuen, Chen, D.; Lotze-Campen, H.; Popp, A.
    The open-source modeling framework MAgPIE (Model of Agricultural Production and its Impact on the Environment) combines economic and biophysical approaches to simulate spatially explicit global scenarios of land use within the 21st century and the respective interactions with the environment. Besides various other projects, it was used to simulate marker scenarios of the Shared Socioeconomic Pathways (SSPs) and contributed substantially to multiple IPCC assessments. However, with growing scope and detail, the non-linear model has become increasingly complex, computationally intensive and non-transparent, requiring structured approaches to improve the development and evaluation of the model. Here, we provide an overview on version 4 of MAgPIE and how it addresses these issues of increasing complexity using new technical features: modular structure with exchangeable module implementations, flexible spatial resolution, in-code documentation, automatized code checking, model/output evaluation and open accessibility. Application examples provide insights into model evaluation, modular flexibility and region-specific analysis approaches. While this paper is focused on the general framework as such, the publication is accompanied by a detailed model documentation describing contents and equations, and by model evaluation documents giving insights into model performance for a broad range of variables. With the open-source release of the MAgPIE 4 framework, we hope to contribute to more transparent, reproducible and collaborative research in the field. Due to its modularity and spatial flexibility, it should provide a basis for a broad range of land-related research with economic or biophysical, global or regional focus.
  • Item
    Global food demand scenarios for the 21st century
    (San Francisco, CA : Public Library of Science (PLoS), 2015) Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H.
  • Item
    Simulating and delineating future land change trajectories across Europe
    (Heidelberg : Springer Verlag, 2018) Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P.
    Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.