Search Results

Now showing 1 - 5 of 5
  • Item
    Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria
    (Weinheim : Wiley-VCH, 2019) Sturm, Sebastian; Siglreitmeier, Maria; Wolf, Daniel; Vogel, Karin; Gratz, Micha; Faivre, Damien; Lubk, Axel; Büchner, Bernd; Sturm, Elena V.; Cölfen, Helmut
    Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain-like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without gelatin is characterized by means of transmission electron microscopy, including electron tomography (ET). These structures indeed bear resemblance to the magnetite assemblies found in MTB, known for their mechanical flexibility and outstanding magnetic properties and known to crystallographically align their magnetite NCs along the strongest <111> magnetization easy axis. Using electron holography (EH) and angular dependent magnetic measurements, the magnetic interaction between the NCs and the generation of a magnetically anisotropic material can be shown. The electro- and magnetostatic modeling demonstrates that in order to precisely determine the magnetization (by means of EH) inside chain-like NCs assemblies, their exact shape, arrangement and stray-fields have to be considered (ideally obtained using ET). © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous Ag-Au Nanosphere Chain Assemblies
    (Weinheim : Wiley-VCH, 2021) Schletz, Daniel; Schultz, Johannes; Potapov, Pavel L.; Steiner, Anja Maria; Krehl, Jonas; König, Tobias A.F.; Mayer, Martin; Lubk, Axel; Fery, Andreas
    Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous Ag-Au nanoparticle chains are reported. Wrinkled templates are used for directed self-assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state-of-the-art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation
    (Weinheim : Wiley-VCH, 2021) Schultz, Johannes; Kirner, Felizitas; Potapov, Pavel; Büchner, Bernd; Lubk, Axel; Sturm, Elena V.
    Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Bridging nano-optics and condensed matter formalisms in a unified description of inelastic scattering of relativistic electron beams
    (Amsterdam : SciPost Foundation, 2021) Lourenço-Martins, Hugo; Lubk, Axel; Kociak, Mathieu
    In the last decades, the blossoming of experimental breakthroughs in the domain of electron energy loss spectroscopy (EELS) has triggered a variety of theoretical developments. Those have to deal with completely different situations, from atomically resolved phonon mapping to electron circular dichroism passing by surface plasmon mapping. All of them rely on very different physical approximations and have not yet been reconciled, despite early attempts to do so. As an effort in that direction, we report on the development of a scalar relativistic quantum electrodynamic (QED) approach of the inelastic scattering of fast electrons. This theory can be adapted to describe all modern EELS experiments, and under the relevant approximations, can be reduced to any of the last EELS theories. In that aim, we present in this paper the state of the art and the basics of scalar relativistic QED relevant to the electron inelastic scattering. We then give a clear relation between the two once antagonist descriptions of the EELS, the retarded green Dyadic, usually applied to describe photonic excitations and the quasi-static mixed dynamic form factor (MDFF), more adapted to describe core electronic excitations of material. We then use this theory to establish two important EELS-related equations. The first one relates the spatially resolved EELS to the imaginary part of the photon propagator and the incoming and outgoing electron beam wavefunction, synthesizing the most common theories developed for analyzing spatially resolved EELS experiments. The second one shows that the evolution of the electron beam density matrix is proportional to the mutual coherence tensor, proving that quite universally, the electromagnetic correlations in the target are imprinted in the coherence properties of the probing electron beam.
  • Item
    Axion Mie theory of electron energy loss spectroscopy in topological insulators
    (Amsterdam : SciPost Foundation, 2021) Schultz, Johannes; Nogueira, Flavio S.; Büchner, Bernd; van den Brink, Jeroen; Lubk, Axel
    Electronic topological states of matter exhibit novel types of responses to electromagnetic fields. The response of strong topological insulators, for instance, is characterized by a so-called axion term in the electromagnetic Lagrangian which is ultimately due to the presence of topological surface states. Here we develop the axion Mie theory for the electromagnetic response of spherical particles including arbitrary sources of fields, i.e., charge and current distributions. We derive an axion induced mixing of transverse magnetic and transverse electric modes which are experimentally detectable through small induced rotations of the field vectors. Our results extend upon previous analyses of the problem. Our main focus is on the experimentally relevant problem of electron energy loss spectroscopy in topological insulators, a technique that has so far not yet been used to detect the axion electromagnetic response in these materials.