Search Results

Now showing 1 - 10 of 12
  • Item
    Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria
    (Weinheim : Wiley-VCH, 2019) Sturm, Sebastian; Siglreitmeier, Maria; Wolf, Daniel; Vogel, Karin; Gratz, Micha; Faivre, Damien; Lubk, Axel; Büchner, Bernd; Sturm, Elena V.; Cölfen, Helmut
    Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain-like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without gelatin is characterized by means of transmission electron microscopy, including electron tomography (ET). These structures indeed bear resemblance to the magnetite assemblies found in MTB, known for their mechanical flexibility and outstanding magnetic properties and known to crystallographically align their magnetite NCs along the strongest <111> magnetization easy axis. Using electron holography (EH) and angular dependent magnetic measurements, the magnetic interaction between the NCs and the generation of a magnetically anisotropic material can be shown. The electro- and magnetostatic modeling demonstrates that in order to precisely determine the magnetization (by means of EH) inside chain-like NCs assemblies, their exact shape, arrangement and stray-fields have to be considered (ideally obtained using ET). © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous Ag-Au Nanosphere Chain Assemblies
    (Weinheim : Wiley-VCH, 2021) Schletz, Daniel; Schultz, Johannes; Potapov, Pavel L.; Steiner, Anja Maria; Krehl, Jonas; König, Tobias A.F.; Mayer, Martin; Lubk, Axel; Fery, Andreas
    Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous Ag-Au nanoparticle chains are reported. Wrinkled templates are used for directed self-assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state-of-the-art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation
    (Weinheim : Wiley-VCH, 2021) Schultz, Johannes; Kirner, Felizitas; Potapov, Pavel; Büchner, Bernd; Lubk, Axel; Sturm, Elena V.
    Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains
    (Washington, DC : ACS Publ., 2019) Mayer, Martin; Potapov, Pavel L.; Pohl, Darius; Steiner, Anja Maria; Schultz, Johannes; Rellinghaus, Bernd; Lubk, Axel; König, Tobias A.F.; Fery, Andreas
    Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm. © 2019 American Chemical Society.
  • Item
    Three-Dimensional Composition and Electric Potential Mapping of III–V Core–Multishell Nanowires by Correlative STEM and Holographic Tomography
    (Washington, DC : ACS Publ., 2018-7-13) Wolf, Daniel; Hübner, René; Niermann, Tore; Sturm, Sebastian; Prete, Paola; Lovergine, Nico; Büchner, Bernd; Lubk, Axel
    The nondestructive characterization of nanoscale devices, such as those based on semiconductor nanowires, in terms of functional potentials is crucial for correlating device properties with their morphological/materials features, as well as for precisely tuning and optimizing their growth process. Electron holographic tomography (EHT) has been used in the past to reconstruct the total potential distribution in three-dimension but hitherto lacked a quantitative approach to separate potential variations due to chemical composition changes (mean inner potential, MIP) and space charges. In this Letter, we combine and correlate EHT and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography on an individual ⟨111⟩ oriented GaAs–AlGaAs core–multishell nanowire (NW). We obtain excellent agreement between both methods in terms of the determined Al concentration within the AlGaAs shell, as well as thickness variations of the few nanometer thin GaAs shell acting as quantum well tube. Subtracting the MIP determined from the STEM tomogram, enables us to observe functional potentials at the NW surfaces and at the Au–NW interface, both ascribed to surface/interface pinning of the semiconductor Fermi level.
  • Item
    Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films
    ([London] : Nature Publishing Group UK, 2022) Makushko, Pavlo; Kosub, Tobias; Pylypovskyi, Oleksandr V.; Hedrich, Natascha; Li, Jiang; Pashkin, Alexej; Avdoshenko, Stanislav; Hübner, René; Ganss, Fabian; Wolf, Daniel; Lubk, Axel; Liedke, Maciej Oskar; Butterling, Maik; Wagner, Andreas; Wagner, Kai; Shields, Brendan J.; Lehmann, Paul; Veremchuk, Igor; Fassbender, Jürgen; Maletinsky, Patrick; Makarov, Denys
    Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the Néel temperature along the thickness of a 50-nm-thick film. The inhomogeneous reduction of the antiferromagnetic order parameter induces a flexomagnetic coefficient of about 15 μB nm−2. The antiferromagnetic ordering in the inhomogeneously strained films can persist up to 100 °C, rendering Cr2O3 relevant for industrial electronics applications. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.
  • Item
    Observation of fractional spin textures in a Heusler material
    ([London] : Nature Publishing Group UK, 2022) Jena, Jagannath; Göbel, Börge; Hirosawa, Tomoki; Díaz, Sebastián A.; Wolf, Daniel; Hinokihara, Taichi; Kumar, Vivek; Mertig, Ingrid; Felser, Claudia; Lubk, Axel; Loss, Daniel; Parkin, Stuart S.P.
    Recently a zoology of non-collinear chiral spin textures has been discovered, most of which, such as skyrmions and antiskyrmions, have integer topological charges. Here we report the experimental real-space observation of the formation and stability of fractional antiskyrmions and fractional elliptical skyrmions in a Heusler material. These fractional objects appear, over a wide range of temperature and magnetic field, at the edges of a sample, whose interior is occupied by an array of nano-objects with integer topological charges, in agreement with our simulations. We explore the evolution of these objects in the presence of magnetic fields and show their interconversion to objects with integer topological charges. This means the topological charge can be varied continuously. These fractional spin textures are not just another type of skyrmion, but are essentially a new state of matter that emerges and lives only at the boundary of a magnetic system. The coexistence of both integer and fractionally charged spin textures in the same material makes the Heusler family of compounds unique for the manipulation of the real-space topology of spin textures and thus an exciting platform for spintronic and magnonic applications.
  • Item
    Freestanding Nanolayers of a Wide-Gap Topological Insulator through Liquid-Phase Exfoliation
    (Weinheim : Wiley-VCH, 2021) Lê Anh, Mai; Potapov, Pavel; Wolf, Daniel; Lubk, Axel; Glatz, Bernhard; Fery, Andreas; Doert, Thomas; Ruck, Michael
    The layered salt Bi14Rh3I9 is a weak three-dimensional (3D) topological insulator (TI), that is, a stack of two-dimensional (2D) TIs. It has a wide non-trivial band gap of 210 meV, which is generated by strong spin-orbit coupling, and possesses protected electronic edge-states. In the structure, charged layers of (Formula presented.) (Bi4Rh)3I]2+ honeycombs and (Formula presented.) Bi2I8]2− chains alternate. The non-trivial topology of Bi14Rh3I9 is an inherent property of the 2D intermetallic fragment. Here, the exfoliation of Bi14Rh3I9 was performed using two different chemical approaches: (a) through a reaction with n-butyllithium and poly(vinylpyrrolidone), (b) through a reaction with betaine in dimethylformamide at 55 °C. The former yielded few-layer sheets of the new compound Bi12Rh3I, while the latter led to crystalline sheets of Bi14Rh3I9 with a thickness down to 5 nm and edge-lengths up to several ten microns. X-ray diffraction and electron microscopy proved that the structure of Bi14Rh3I9 remained intact. Thus, it was assumed that the particles are still TIs. Dispersions of these flakes now allow for next steps towards the envisioned applications in nanoelectronics, such as the study of quantum coherence in deposited films, the combination with superconducting particles or films for the generation of Majorana fermions, or studies on their behavior under the influence of magnetic or electric fields or in contact with various materials occurring in devices. The method presented generally allows to exfoliate layers with high specific charges and thus the use of layered starting materials beyond van der Waals crystals. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport
    (Weinheim : Wiley-VCH, 2019) Grönke, Martin; Buschbeck, Benjamin; Schmidt, Peer; Valldor, Martin; Oswald, Steffen; Hao, Qi; Lubk, Axel; Wolf, Daniel; Steiner, Udo; Büchner, Bernd; Hampel, Silke
    The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX3 (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX3 nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX3 micro- and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one-step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600 °C → 500 °C for CrCl3 and 650 °C → 550 °C for CrBr3 or CrI3) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX3 nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX3 monolayers using the example of CrCl3. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Freestanding few-layer sheets of a dual topological insulator
    (London : Nature Publishing Group, 2021) Anh, Mai Lê; Potapov, Pavel; Lubk, Axel; Doert, Thomas; Ruck, Michael
    The emergence of topological insulators (TIs) raised high expectations for their application in quantum computers and spintronics. Being bulk semiconductors, their nontrivial topology at the electronic bandgap enables dissipation-free charge and spin transport in protected metallic surface states. For application, crystalline thin films are requested in sufficient quantity. A suitable approach is the liquid phase exfoliation (LPE) of TI crystals that have layered structures. Bi2TeI is a weak 3D TI, which leads to protected edge states at the side facets of a crystal, as well as a topological crystalline insulator, which is responsible for protected states at the top and bottom faces. We developed an effective, scalable protocol for LPE of freestanding nanoflakes from Bi2TeI crystals. By heat treatment and sonication in isopropyl alcohol and poly(vinylpyrrolidone), crystalline Bi2TeI sheets with a thickness of ~50 nm were obtained and can therefore be considered for further processing toward microelectronic applications.