Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Social tipping dynamics for stabilizing Earth's climate by 2050

2020, Otto, Ilona M., Donges, Jonathan F., Cremades, Roger, Bhowmik, Avit, Hewitt, Richard J., Lucht, Wolfgang, Rockström, Johan, Allerberger, Franziska, McCaffrey, Mark, Doe, Sylvanus S.P., Lenferna, Alex, Morán, Nerea, van Vuuren, Detlef P., Schellnhuber, Hans Joachim

Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STEs). STEs are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.

Loading...
Thumbnail Image
Item

A multi-model analysis of risk of ecosystem shifts under climate change

2013, Warszawski, Lila, Friend, Andrew, Ostberg, Sebastian, Frieler, Katja, Lucht, Wolfgang, Schaphoff, Sibyll, Beerling, David, Cadule, Patricia, Ciais, Philippe, Clark, Douglas B., Kahana, Ron, Ito, Akihiko, Keribin, Rozenn, Kleidon, Axel, Lomas, Mark, Nishina, Kazuya, Pavlick, Ryan, Rademacher, Tim Tito, Buechner, Matthias, Piontek, Franziska, Schewe, Jacob, Serdeczny, Olivia, Schellnhuber, Hans Joachim

Climate change may pose a high risk of change to Earth's ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5–19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980–2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest.