Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

2006, Erbrecht, Tim, Lucht, Wolfgang

Background: The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. Results: We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Conclusion: Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events.

Loading...
Thumbnail Image
Item

Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal

2016, Heck, Vera, Donges, Jonathan F., Lucht, Wolfgang

The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2°C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.

Loading...
Thumbnail Image
Item

A systematic study of sustainable development goal (SDG) interactions

2017, Pradhan, Prajal, Costa, Luís, Rybski, Diego, Lucht, Wolfgang, Kropp, Jürgen P.

Sustainable development goals (SDGs) have set the 2030 agenda to transform our world by tackling multiple challenges humankind is facing to ensure well‐being, economic prosperity, and environmental protection. In contrast to conventional development agendas focusing on a restricted set of dimensions, the SDGs provide a holistic and multidimensional view on development. Hence, interactions among the SDGs may cause diverging results. To analyze the SDG interactions we systematize the identification of synergies and trade‐offs using official SDG indicator data for 227 countries. A significant positive correlation between a pair of SDG indicators is classified as a synergy while a significant negative correlation is classified as a trade‐off. We rank synergies and trade‐offs between SDGs pairs on global and country scales in order to identify the most frequent SDG interactions. For a given SDG, positive correlations between indicator pairs were found to outweigh the negative ones in most countries. Among SDGs the positive and negative correlations between indicator pairs allowed for the identification of particular global patterns. SDG 1 (No poverty) has synergetic relationship with most of the other goals, whereas SDG 12 (Responsible consumption and production) is the goal most commonly associated with trade‐offs. The attainment of the SDG agenda will greatly depend on whether the identified synergies among the goals can be leveraged. In addition, the highlighted trade‐offs, which constitute obstacles in achieving the SDGs, need to be negotiated and made structurally nonobstructive by deeper changes in the current strategies.

Loading...
Thumbnail Image
Item

Three centuries of dual pressure from land use and climate change on the biosphere

2015, Ostberg, Sebastian, Schaphoff, Sibyll, Lucht, Wolfgang, Gerten, Dieter

Human land use and anthropogenic climate change (CC) are placing mounting pressure on natural ecosystems worldwide, with impacts on biodiversity, water resources, nutrient and carbon cycles. Here, we present a quantitative macro-scale comparative analysis of the separate and joint dual impacts of land use and land cover change (LULCC) and CC on the terrestrial biosphere during the last ca. 300 years, based on simulations with a dynamic global vegetation model and an aggregated metric of simultaneous biogeochemical, hydrological and vegetation-structural shifts. We find that by the beginning of the 21st century LULCC and CC have jointly caused major shifts on more than 90% of all areas now cultivated, corresponding to 26% of the land area. CC has exposed another 26% of natural ecosystems to moderate or major shifts. Within three centuries, the impact of LULCC on landscapes has increased 13-fold. Within just one century, CC effects have caught up with LULCC effects.

Loading...
Thumbnail Image
Item

Terrestrial vegetation redistribution and carbon balance under climate change

2006, Lucht, Wolfgang, Schaphoff, Sibyll, Erbrecht, Tim, Heyder, Ursula, Cramer, Wolfgang

Background Dynamic Global Vegetation Models (DGVMs) compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present) to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. Results The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21st century. Conclusion Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100.

Loading...
Thumbnail Image
Item

A multi-model analysis of risk of ecosystem shifts under climate change

2013, Warszawski, Lila, Friend, Andrew, Ostberg, Sebastian, Frieler, Katja, Lucht, Wolfgang, Schaphoff, Sibyll, Beerling, David, Cadule, Patricia, Ciais, Philippe, Clark, Douglas B., Kahana, Ron, Ito, Akihiko, Keribin, Rozenn, Kleidon, Axel, Lomas, Mark, Nishina, Kazuya, Pavlick, Ryan, Rademacher, Tim Tito, Buechner, Matthias, Piontek, Franziska, Schewe, Jacob, Serdeczny, Olivia, Schellnhuber, Hans Joachim

Climate change may pose a high risk of change to Earth's ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5–19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980–2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest.

Loading...
Thumbnail Image
Item

The biosphere under potential Paris outcomes

2018, Ostberg, Sebastian, Boysen, Lena R., Schaphoff, Sibyll, Lucht, Wolfgang, Gerten, Dieter

Rapid economic and population growth over the last centuries have started to push the Earth out of its Holocene state into the Anthropocene. In this new era, ecosystems across the globe face mounting dual pressure from human land use change (LUC) and climate change (CC). With the Paris Agreement, the international community has committed to holding global warming below 2°C above preindustrial levels, yet current pledges by countries to reduce greenhouse gas emissions appear insufficient to achieve that goal. At the same time, the sustainable development goals strive to reduce inequalities between countries and provide sufficient food, feed, and clean energy to a growing world population likely to reach more than 9 billion by 2050. Here, we present a macro‐scale analysis of the projected impacts of both CC and LUC on the terrestrial biosphere over the 21st century using the Representative Concentration Pathways (RCPs) to illustrate possible trajectories following the Paris Agreement. We find that CC may cause major impacts in landscapes covering between 16% and 65% of the global ice‐free land surface by the end of the century, depending on the success or failure of achieving the Paris goal. Accounting for LUC impacts in addition, this number increases to 38%–80%. Thus, CC will likely replace LUC as the major driver of ecosystem change unless global warming can be limited to well below 2°C. We also find a substantial risk that impacts of agricultural expansion may offset some of the benefits of ambitious climate protection for ecosystems.

Loading...
Thumbnail Image
Item

Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution

2017, Barfuss, Wolfram, Donges, Jonathan F., Wiedermann, Marc, Lucht, Wolfgang

Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social–ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models

Loading...
Thumbnail Image
Item

The limits to global-warming mitigation by terrestrial carbon removal

2017, Boysen, Lena R., Lucht, Wolfgang, Gerten, Dieter, Heck, Vera, Lenton, Timothy M., Schellnhuber, Hans Joachim

Massive near‐term greenhouse gas emissions reduction is a precondition for staying “well below 2°C” global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature “overshoot” in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to “repair” delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre‐industrial level. Our results show that those tCDR measures are unable to counteract “business‐as‐usual” emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addition, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160–190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade‐offs with society and the biosphere, we conclude that large‐scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable “supporting actor” for strong mitigation if sustainable schemes are established immediately.

Loading...
Thumbnail Image
Item

Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints

2013, Fader, Marianela, Gerten, Dieter, Krause, Michael, Lucht, Wolfgang, Cramer, Wolfgang

In our globalizing world, the geographical locations of food production and consumption are becoming increasingly disconnected, which increases reliance on external resources and their trade. We quantified to what extent water and land constraints limit countries' capacities, at present and by 2050, to produce on their own territory the crop products that they currently import from other countries. Scenarios of increased crop productivity and water use, cropland expansion (excluding areas prioritized for other uses) and population change are accounted for. We found that currently 16% of the world population use the opportunities of international trade to cover their demand for agricultural products. Population change may strongly increase the number of people depending on ex situ land and water resources up to about 5.2 billion (51% of world population) in the SRES A2r scenario. International trade will thus have to intensify if population growth is not accompanied by dietary change towards less resource-intensive products, by cropland expansion, or by productivity improvements, mainly in Africa and the Middle East. Up to 1.3 billion people may be at risk of food insecurity in 2050 in present low-income economies (mainly in Africa), if their economic development does not allow them to afford productivity increases, cropland expansion and/or imports from other countries.