Search Results

Now showing 1 - 3 of 3
  • Item
    Biomass production in plantations: Land constraints increase dependency on irrigation water
    (Oxford : Wiley-Blackwell, 2018) Jans, Yvonne; Berndes, Göran; Heinke, Jens; Lucht, Wolfgang; Gerten, Dieter
    Integrated assessment model scenarios project rising deployment of biomass-using energy systems in climate change mitigation scenarios. But there is concern that bioenergy deployment will increase competition for land and water resources and obstruct objectives such as nature protection, the preservation of carbon-rich ecosystems, and food security. To study the relative importance of water and land availability as biophysical constraints to bioenergy deployment at a global scale, we use a process-detailed, spatially explicit biosphere model to simulate rain-fed and irrigated biomass plantation supply along with the corresponding water consumption for different scenarios concerning availability of land and water resources. We find that global plantation supplies are mainly limited by land availability and only secondarily by freshwater availability. As a theoretical upper limit, if all suitable lands on Earth, besides land currently used in agriculture, were available for bioenergy plantations (“Food first” scenario), total plantation supply would be in the range 2,010–2,300 EJ/year depending on water availability and use. Excluding all currently protected areas reduces the supply by 60%. Excluding also areas where conversion to biomass plantations causes carbon emissions that might be considered unacceptably high will reduce the total plantation supply further. For example, excluding all areas where soil and vegetation carbon stocks exceed 150 tC/ha (“Carbon threshold savanna” scenario) reduces the supply to 170–290 EJ/year. With decreasing land availability, the amount of water available for irrigation becomes vitally important. In the least restrictive land availability scenario (“Food first”), up to 77% of global plantation biomass supply is obtained without additional irrigation. This share is reduced to 31% for the most restrictive “Carbon threshold savanna” scenario. The results highlight the critical—and geographically varying—importance of co-managing land and water resources if substantial contributions of bioenergy are to be reached in mitigation portfolios.
  • Item
    The concerns of the young protesters are justified: A statement by Scientists for Future concerning the protests for more climate protection
    (München : Oekom Verl., 2019) Hagedorn, Gregor; Loew, Thomas; Seneviratne, Sonia I.; Lucht, Wolfgang; Beck, Marie-Luise; Hesse, Janina; Knutti, Reto; Quaschning, Volker; Schleimer, Jan-Hendrik; Mattauch, Linus; Breyer, Christian; Hübener, Heike; Kirchengast, Gottfried; Chodura, Alice; Clausen, Jens; Creutzig, Felix; Darbi, Marianne; Daub, Claus-Heinrich; Ekardt, Felix; Göpel, Maja; Hardt, Judith N.; Hertin, Julia; Hickler, Thomas; Köhncke, Arnulf; Köster, Stephan; Krohmer, Julia; Kromp-Kolb, Helga; Leinfelder, Reinhold; Mederake, Linda; Neuhaus, Michael; Rahmstorf, Stefan; Schmidt, Christine; Schneider, Christoph; Schneider, Gerhard; Seppelt, Ralf; Spindler, Uli; Springmann, Marco; Staab, Katharina; Stocker, Thomas F.; Steininger, Karl; Hirschhausen, Eckart von; Winter, Susanne; Wittau, Martin; Zens, Josef
    In March 2019, German-speaking scientists and scholars calling themselves Scientists for Future, published a statement in support of the youth protesters in Germany, Austria, and Switzerland (Fridays for Future, Klimastreik/Climate Strike), verifying the scientific evidence that the youth protestors refer to. In this article, they provide the full text of the statement, including the list of supporting facts (in both English and German) as well as an analysis of the results and impacts of the statement. Furthermore, they reflect on the challenges for scientists and scholars who feel a dual responsibility: on the one hand, to remain independent and politically neutral, and, on the other hand, to inform and warn societies of the dangers that lie ahead. © 2019 G. Hagedorn et al.; licensee oekom verlag.This Open Access article is published under the terms of the Creative Commons Attribution License CCBY4.0 (http://creativecommons.org/licenses/by/4.0).
  • Item
    Pyrogenic carbon capture and storage
    (Oxford : Wiley-Blackwell, 2019) Schmidt, Hans-Peter; Anca-Couce, Andrés; Hagemann, Nikolas; Werner, Constanze; Gerten, Dieter; Lucht, Wolfgang; Kammann, Claudia
    The growth of biomass is considered the most efficient method currently available to extract carbon dioxide from the atmosphere. However, biomass carbon is easily degraded by microorganisms releasing it in the form of greenhouse gases back to the atmosphere. If biomass is pyrolyzed, the organic carbon is converted into solid (biochar), liquid (bio-oil), and gaseous (permanent pyrogas) carbonaceous products. During the last decade, biochar has been discussed as a promising option to improve soil fertility and sequester carbon, although the carbon efficiency of the thermal conversion of biomass into biochar is in the range of 30%–50% only. So far, the liquid and gaseous pyrolysis products were mainly considered for combustion, though they can equally be processed into recalcitrant forms suitable for carbon sequestration. In this review, we show that pyrolytic carbon capture and storage (PyCCS) can aspire for carbon sequestration efficiencies of >70%, which is shown to be an important threshold to allow PyCCS to become a relevant negative emission technology. Prolonged residence times of pyrogenic carbon can be generated (a) within the terrestrial biosphere including the agricultural use of biochar; (b) within advanced bio-based materials as long as they are not oxidized (biochar, bio-oil); and (c) within suitable geological deposits (bio-oil and CO 2 from permanent pyrogas oxidation). While pathway (c) would need major carbon taxes or similar governmental incentives to become a realistic option, pathways (a) and (b) create added economic value and could at least partly be implemented without other financial incentives. Pyrolysis technology is already well established, biochar sequestration and bio-oil sequestration in soils, respectively biomaterials, do not present ecological hazards, and global scale-up appears feasible within a time frame of 10–30 years. Thus, PyCCS could evolve into a decisive tool for global carbon governance, serving climate change mitigation and the sustainable development goals simultaneously. © 2018 John Wiley & Sons Ltd