Search Results

Now showing 1 - 3 of 3
  • Item
    Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal
    (München : European Geopyhsical Union, 2016) Heck, Vera; Donges, Jonathan F.; Lucht, Wolfgang
    The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2°C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.
  • Item
    Contribution of permafrost soils to the global carbon budget
    (Bristol : IOP Publishing, 2013) Schaphoff, Sibyll; Heyder, Ursula; Ostberg, Sebastian; Gerten, Dieter; Heinke, Jens; Lucht, Wolfgang
    Climate warming affects permafrost soil carbon pools in two opposing ways: enhanced vegetation growth leads to higher carbon inputs to the soil, whereas permafrost melting accelerates decomposition and hence carbon release. Here, we study the spatial and temporal dynamics of these two processes under scenarios of climate change and evaluate their influence on the carbon balance of the permafrost zone. We use the dynamic global vegetation model LPJmL, which simulates plant physiological and ecological processes and includes a newly developed discrete layer energy balance permafrost module and a vertical carbon distribution within the soil layer. The model is able to reproduce the interactions between vegetation and soil carbon dynamics as well as to simulate dynamic permafrost changes resulting from changes in the climate. We find that vegetation responds more rapidly to warming of the permafrost zone than soil carbon pools due to long time lags in permafrost thawing, and that the initial simulated net uptake of carbon may continue for some decades of warming. However, once the turning point is reached, if carbon release exceeds uptake, carbon is lost irreversibly from the system and cannot be compensated for by increasing vegetation carbon input. Our analysis highlights the importance of including dynamic vegetation and long-term responses into analyses of permafrost zone carbon budgets.
  • Item
    Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework
    (Göttingen : Copernicus Publ., 2020) Donges, Jonathan F.; Heitzig, Jobst; Barfuss, Wolfram; Wiedermann, Marc; Kassel, Johannes A.; Kittel, Tim; Kolb, Jakob J.; Kolster, Till; Müller-Hansen, Finn; Otto, Ilona M.; Zimmerer, Kilian B.; Lucht, Wolfgang
    Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes. © Author(s) 2020.