Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis

2020, Smith, Steven J., Chateau, Jean, Dorheim, Kalyn, Drouet, Laurent, Durand-Lasserve, Olivier, Fricko, Oliver, Fujimori, Shinichiro, Hanaoka, Tatsuya, Harmsen, Mathijs, Hilaire, Jérôme, Keramidas, Kimon, Klimont, Zbigniew, Luderer, Gunnar, Moura, Maria Cecilia P., Riahi, Keywan, Rogelj, Joeri, Sano, Fuminori, van Vuuren, Detlef P., Wada, Kenichi

The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.

Loading...
Thumbnail Image
Item

The role of methane in future climate strategies: mitigation potentials and climate impacts

2019, Harmsen, Mathijs, Mathijs, Detlef P., Bodirsky, Benjamin Leon, Chateau, Jean, Durand-Lasserve, Olivier, Drouet, Laurent, Fricko, Oliver, Fujimori, Shinichiro, Gernaat, David E.H.J., Hanaoka, Tatsuya, Hilaire, Jérôme, Keramidas, Kimon, Luderer, Gunnar, Moura, Maria Cecilia P., Sano, Fuminori, Smith, Steven J., Wada, Kenichi

This study examines model-specific assumptions and projections of methane (CH4) emissions in deep mitigation scenarios generated by integrated assessment models (IAMs). For this, scenarios of nine models are compared in terms of sectoral and regional CH4 emission reduction strategies, as well as resulting climate impacts. The models’ projected reduction potentials are compared to sector and technology-specific reduction potentials found in literature. Significant cost-effective and non-climate policy related reductions are projected in the reference case (10–36% compared to a “frozen emission factor” scenario in 2100). Still, compared to 2010, CH4 emissions are expected to rise steadily by 9–72% (up to 412 to 654 Mt CH4/year). Ambitious CO2 reduction measures could by themselves lead to a reduction of CH4 emissions due to a reduction of fossil fuels (22–48% compared to the reference case in 2100). However, direct CH4 mitigation is crucial and more effective in bringing down CH4 (50–74% compared to the reference case). Given the limited reduction potential, agriculture CH4 emissions are projected to constitute an increasingly larger share of total anthropogenic CH4 emissions in mitigation scenarios. Enteric fermentation in ruminants is in that respect by far the largest mitigation bottleneck later in the century with a projected 40–78% of total remaining CH4 emissions in 2100 in a strong (2 °C) climate policy case. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation

2019, Harmsen, Mathijs, Fricko, Oliver, Hilaire, Jérôme, van Vuuren, Detlef P., Drouet, Laurent, Durand-Lasserve, Olivier, Fujimori, Shinichiro, Keramidas, Kimon, Klimont, Zbigniew, Luderer, Gunnar, Aleluia Reis, Lara, Riahi, Keywan, Sano, Fuminori, Smith, Steven J.

Several studies have shown that the greenhouse gas reduction resulting from the current nationally determined contributions (NDCs) will not be enough to meet the overall targets of the Paris Climate Agreement. It has been suggested that more ambition mitigations of short-lived climate forcer (SLCF) emissions could potentially be a way to reduce the risk of overshooting the 1.5 or 2 °C target in a cost-effective way. In this study, we employ eight state-of-the-art integrated assessment models (IAMs) to examine the global temperature effects of ambitious reductions of methane, black and organic carbon, and hydrofluorocarbon emissions. The SLCFs measures considered are found to add significantly to the effect of the NDCs on short-term global mean temperature (GMT) (in the year 2040: − 0.03 to − 0.15 °C) and on reducing the short-term rate-of-change (by − 2 to 15%), but only a small effect on reducing the maximum temperature change before 2100. This, because later in the century under assumed ambitious climate policy, SLCF mitigation is maximized, either directly or indirectly due to changes in the energy system. All three SLCF groups can contribute to achieving GMT changes. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective

2020, Bauer, Nico, Klein, David, Humpenöder, Florian, Kriegler, Elmar, Luderer, Gunnar, Popp, Alexander, Strefler, Jessica

Biomass feedstocks can be used to substitute fossil fuels and effectively remove carbon from the atmosphere to offset residual CO2 emissions from fossil fuel combustion and other sectors. Both features make biomass valuable for climate change mitigation; therefore, CO2 emission mitigation leads to complex and dynamic interactions between the energy and the land-use sector via emission pricing policies and bioenergy markets. Projected bioenergy deployment depends on climate target stringency as well as assumptions about context variables such as technology development, energy and land markets as well as policies. This study investigates the intra- and intersectorial effects on physical quantities and prices by coupling models of the energy (REMIND) and land-use sector (MAgPIE) using an iterative soft-link approach. The model framework is used to investigate variations of a broad set of context variables, including the harmonized variations on bioenergy technologies of the 33rd model comparison study of the Stanford Energy Modeling Forum (EMF-33) on climate change mitigation and large scale bioenergy deployment. Results indicate that CO2 emission mitigation triggers strong decline of fossil fuel use and rapid growth of bioenergy deployment around midcentury (~ 150 EJ/year) reaching saturation towards end-of-century. Varying context variables leads to diverse changes on mid-century bioenergy markets and carbon pricing. For example, reducing the ability to exploit the carbon value of bioenergy increases bioenergy use to substitute fossil fuels, whereas limitations on bioenergy supply shift bioenergy use to conversion alternatives featuring higher carbon capture rates. Radical variations, like fully excluding all technologies that combine bioenergy use with carbon removal, lead to substantial intersectorial effects by increasing bioenergy demand and increased economic pressure on both sectors. More gradual variations like selective exclusion of advanced bioliquid technologies in the energy sector or changes in diets mostly lead to substantial intrasectorial reallocation effects. The results deepen our understanding of the land-energy nexus, and we discuss the importance of carefully choosing variations in sensitivity analyses to provide a balanced assessment. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Negative emissions and international climate goals—learning from and about mitigation scenarios

2019, Hilaire, Jérôme, Minx, Jan C., Callaghan, Max W., Edmonds, Jae, Luderer, Gunnar, Nemet, Gregory F., Rogelj, Joeri, del Mar Zamora, Maria

For aiming to keep global warming well-below 2 °C and pursue efforts to limit it to 1.5 °C, as set out in the Paris Agreement, a full-fledged assessment of negative emission technologies (NETs) that remove carbon dioxide from the atmosphere is crucial to inform science-based policy making. With the Paris Agreement in mind, we re-analyse available scenario evidence to understand the roles of NETs in 1.5 °C and 2 °C scenarios and, for the first time, link this to a systematic review of findings in the underlying literature. In line with previous research, we find that keeping warming below 1.5 °C requires a rapid large-scale deployment of NETs, while for 2 °C, we can still limit NET deployment substantially by ratcheting up near-term mitigation ambition. Most recent evidence stresses the importance of future socio-economic conditions in determining the flexibility of NET deployment and suggests opportunities for hedging technology risks by adopting portfolios of NETs. Importantly, our thematic review highlights that there is a much richer set of findings on NETs than commonly reflected upon both in scientific assessments and available reviews. In particular, beyond the common findings on NETs underpinned by dozens of studies around early scale-up, the changing shape of net emission pathways or greater flexibility in the timing of climate policies, there is a suite of “niche and emerging findings”, e.g. around innovation needs and rapid technological change, termination of NETs at the end of the twenty-first century or the impacts of climate change on the effectiveness of NETs that have not been widely appreciated. Future research needs to explore the role of climate damages on NET uptake, better understand the geophysical constraints of NET deployment (e.g. water, geological storage, climate feedbacks), and provide a more systematic assessment of NET portfolios in the context of sustainable development goals. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Air quality co-benefits of ratcheting up the NDCs

2020, Rauner, Sebastian, Hilaire, Jérôme, Klein, David, Strefler, Jessica, Luderer, Gunnar

The current nationally determined contributions, pledged by the countries under the Paris Agreement, are far from limiting climate change to below 2 ∘C temperature increase by the end of the century. The necessary ratcheting up of climate policy is projected to come with a wide array of additional benefits, in particular a reduction of today’s 4.5 million annual premature deaths due to poor air quality. This paper therefore addresses the question how climate policy and air pollution–related health impacts interplay until 2050 by developing a comprehensive global modeling framework along the cause and effect chain of air pollution–induced social costs. We find that ratcheting up climate policy to a 2 ∘ compliant pathway results in welfare benefits through reduced air pollution that are larger than mitigation costs, even with avoided climate change damages neglected. The regional analysis demonstrates that the 2 ∘C pathway is therefore, from a social cost perspective, a “no-regret option” in the global aggregate, but in particular for China and India due to high air quality benefits, and also for developed regions due to net negative mitigation costs. Energy and resource exporting regions, on the other hand, face higher mitigation cost than benefits. Our analysis further shows that the result of higher health benefits than mitigation costs is robust across various air pollution control scenarios. However, although climate mitigation results in substantial air pollution emission reductions overall, we find significant remaining emissions in the transport and industry sectors even in a 2 ∘C world. We therefore call for further research in how to optimally exploit climate policy and air pollution control, deriving climate change mitigation pathways that maximize co-benefits. © 2020, The Author(s).