Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

The economically optimal warming limit of the planet

2019, Ueckerd, Falko, Frieler, Katja, Lange, Stefan, Wenz, Leonie, Luderer, Gunnar, Levermann, Anders

Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2°C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy-economy-climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to "well below 2 degrees" is thus also an economically optimal goal given above assumptions on adaptation and damage persistence. © 2019 Copernicus GmbH. All rights reserved.

Loading...
Thumbnail Image
Item

Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective

2020, Bauer, Nico, Klein, David, Humpenöder, Florian, Kriegler, Elmar, Luderer, Gunnar, Popp, Alexander, Strefler, Jessica

Biomass feedstocks can be used to substitute fossil fuels and effectively remove carbon from the atmosphere to offset residual CO2 emissions from fossil fuel combustion and other sectors. Both features make biomass valuable for climate change mitigation; therefore, CO2 emission mitigation leads to complex and dynamic interactions between the energy and the land-use sector via emission pricing policies and bioenergy markets. Projected bioenergy deployment depends on climate target stringency as well as assumptions about context variables such as technology development, energy and land markets as well as policies. This study investigates the intra- and intersectorial effects on physical quantities and prices by coupling models of the energy (REMIND) and land-use sector (MAgPIE) using an iterative soft-link approach. The model framework is used to investigate variations of a broad set of context variables, including the harmonized variations on bioenergy technologies of the 33rd model comparison study of the Stanford Energy Modeling Forum (EMF-33) on climate change mitigation and large scale bioenergy deployment. Results indicate that CO2 emission mitigation triggers strong decline of fossil fuel use and rapid growth of bioenergy deployment around midcentury (~ 150 EJ/year) reaching saturation towards end-of-century. Varying context variables leads to diverse changes on mid-century bioenergy markets and carbon pricing. For example, reducing the ability to exploit the carbon value of bioenergy increases bioenergy use to substitute fossil fuels, whereas limitations on bioenergy supply shift bioenergy use to conversion alternatives featuring higher carbon capture rates. Radical variations, like fully excluding all technologies that combine bioenergy use with carbon removal, lead to substantial intersectorial effects by increasing bioenergy demand and increased economic pressure on both sectors. More gradual variations like selective exclusion of advanced bioliquid technologies in the energy sector or changes in diets mostly lead to substantial intrasectorial reallocation effects. The results deepen our understanding of the land-energy nexus, and we discuss the importance of carefully choosing variations in sensitivity analyses to provide a balanced assessment. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Carbon lock-in through capital stock inertia associated with weak near-term climate policies

2013, Bertram, Christoph, Johnson, Nils, Luderer, Gunnar, Riahi, Keywan, Isaac, Morna, Eom, Jiyong

Stringent long-term climate targets necessitate a limit on cumulative emissions in this century for which sufficient policy signals are lacking. Using nine energy-economy models, we explore how policies pursued during the next two decades impact long-term transformation pathways towards stringent long-term climate targets. Less stringent near-term policies (i.e., those with larger emissions) consume more of the long-term cumulative emissions budget in the 2010–2030 period, which increases the likelihood of overshooting the budget and the urgency of reducing GHG emissions after 2030. Furthermore, the larger near-term GHG emissions associated with less stringent policies are generated primarily by additional coal-based electricity generation. Therefore, to be successful in meeting the long-term target despite near-term emissions reductions that are weaker than those implied by cost-optimal mitigation pathways, models must prematurely retire significant coal capacity while rapidly ramping up low-carbon technologies between 2030 and 2050 and remove large quantities of CO2 from the atmosphere in the latter half of the century. While increased energy efficiency lowers mitigation costs considerably, even with weak near-term policies, it does not substantially reduce the short-term reliance on coal electricity. However, increased energy efficiency does allow the energy system more flexibility in mitigating emissions and, thus, facilitates the post-2030 transition.

Loading...
Thumbnail Image
Item

2°C and SDGs: United they stand, divided they fall?

2016, von Stechow, Christoph, Minx, Jan C., Riahi, Keywan, Jewell, Jessica, McCollum, David L., Callaghan, Max W., Bertram, Christoph, Luderer, Gunnar, Baiocchi, Giovanni

The adoption of the Sustainable Development Goals (SDGs) and the new international climate treaty could put 2015 into the history books as a defining year for setting human development on a more sustainable pathway. The global climate policy and SDG agendas are highly interconnected: the way that the climate problem is addressed strongly affects the prospects of meeting numerous other SDGs and vice versa. Drawing on existing scenario results from a recent energy-economy-climate model inter-comparison project, this letter analyses these synergies and (risk) trade-offs of alternative 2 °C pathways across indicators relevant for energy-related SDGs and sustainable energy objectives. We find that limiting the availability of key mitigation technologies yields some co-benefits and decreases risks specific to these technologies but greatly increases many others. Fewer synergies and substantial trade-offs across SDGs are locked into the system for weak short-term climate policies that are broadly in line with current Intended Nationally Determined Contributions (INDCs), particularly when combined with constraints on technologies. Lowering energy demand growth is key to managing these trade-offs and creating synergies across multiple energy-related SD dimensions. We argue that SD considerations are central for choosing socially acceptable 2 °C pathways: the prospects of meeting other SDGs need not dwindle and can even be enhanced for some goals if appropriate climate policy choices are made. Progress on the climate policy and SDG agendas should therefore be tracked within a unified framework.