Search Results

Now showing 1 - 10 of 41
  • Item
    Carbon lock-in through capital stock inertia associated with weak near-term climate policies
    (Amsterdam [u.a.] : Elsevier Science, 2013) Bertram, Christoph; Johnson, Nils; Luderer, Gunnar; Riahi, Keywan; Isaac, Morna; Eom, Jiyong
    Stringent long-term climate targets necessitate a limit on cumulative emissions in this century for which sufficient policy signals are lacking. Using nine energy-economy models, we explore how policies pursued during the next two decades impact long-term transformation pathways towards stringent long-term climate targets. Less stringent near-term policies (i.e., those with larger emissions) consume more of the long-term cumulative emissions budget in the 2010–2030 period, which increases the likelihood of overshooting the budget and the urgency of reducing GHG emissions after 2030. Furthermore, the larger near-term GHG emissions associated with less stringent policies are generated primarily by additional coal-based electricity generation. Therefore, to be successful in meeting the long-term target despite near-term emissions reductions that are weaker than those implied by cost-optimal mitigation pathways, models must prematurely retire significant coal capacity while rapidly ramping up low-carbon technologies between 2030 and 2050 and remove large quantities of CO2 from the atmosphere in the latter half of the century. While increased energy efficiency lowers mitigation costs considerably, even with weak near-term policies, it does not substantially reduce the short-term reliance on coal electricity. However, increased energy efficiency does allow the energy system more flexibility in mitigating emissions and, thus, facilitates the post-2030 transition.
  • Item
    Energy system developments and investments in the decisive decade for the Paris Agreement goals
    (Bristol : IOP Publ., 2021-6-29) Bertram, Christoph; Riahi, Keywan; Hilaire, Jérôme; Bosetti, Valentina; Drouet, Laurent; Fricko, Oliver; Malik, Aman; Pupo Nogueira, Larissa; van der Zwaan, Bob; van Ruijven, Bas; van Vuuren, Detlef; Weitzel, Matthias; Dalla Longa, Francesco; de Boer, Harmen-Sytze; Emmerling, Johannes; Fosse, Florian; Fragkiadakis, Kostas; Harmsen, Mathijs; Keramidas, Kimon; Kishimoto, Paul Natsuo; Kriegler, Elmar; Krey, Volker; Paroussos, Leonidas; Saygin, Deger; Vrontisi, Zoi; Luderer, Gunnar
    The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.
  • Item
    Managing power demand from air conditioning benefits solar pv in India scenarios for 2040
    (Basel : MDPI, 2020) Ershad, Ahmad Murtaza; Pietzcker, Robert; Ueckerdt, Falko; Luderer, Gunnar
    An Indian electricity system with very high shares of solar photovoltaics seems to be a plausible future given the ever-falling solar photovoltaic (PV) costs, recent Indian auction prices, and governmental support schemes. However, the variability of solar PV electricity, i.e., the seasonal, daily, and other weather-induced variations, could create an economic barrier. In this paper, we analyzed a strategy to overcome this barrier with demand-side management (DSM) by lending flexibility to the rapidly increasing electricity demand for air conditioning through either precooling or chilled water storage. With an open-source power sector model, we estimated the endogenous investments into and the hourly dispatching of these demand-side options for a broad range of potential PV shares in the Indian power system in 2040. We found that both options reduce the challenges of variability by shifting electricity demand from the evening peak to midday, thereby reducing the temporal mismatch of demand and solar PV supply profiles. This increases the economic value of solar PV, especially at shares above 40%, the level at which the economic value roughly doubles through demand flexibility. Consequently, DSM increases the competitive and cost-optimal solar PV generation share from 33-45% (without DSM) to ∼45-60% (with DSM). These insights are transferable to most countries with high solar irradiation in warm climate zones, which amounts to a major share of future electricity demand. This suggests that technologies, which give flexibility to air conditioning demand, can be an important contribution toward enabling a solar-centered global electricity supply. © 2020 by the authors.
  • Item
    Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies
    ([London] : Nature Publishing Group UK, 2019) Luderer, Gunnar; Pehl, Michaja; Arvesen, Anders; Gibon, Thomas; Bodirsky, Benjamin L.; de Boer, Harmen Sytze; Fricko, Oliver; Hejazi, Mohamad; Humpenöder, Florian; Iyer, Gokul; Mima, Silvana; Mouratiadou, Ioanna; Pietzcker, Robert C.; Popp, Alexander; van den Berg, Maarten; van Vuuren, Detlef; Hertwich, Edgar G.
    A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.
  • Item
    Common but differentiated leadership: strategies and challenges for carbon neutrality by 2050 across industrialized economies
    (Bristol : IOP Publ., 2020) Schreyer, Felix; Luderer, Gunnar; Rodrigues, Renato; Pietzcker, Robert C.; Baumstark, Lavinia; Sugiyama, Masahiro; Brecha, Robert J.; Ueckerdt, Falko
    Given their historic emissions and economic capability, we analyze a leadership role for representative industrialized regions (EU, US, Japan, and Australia) in the global climate mitigation effort. Using the global integrated assessment model REMIND, we systematically compare region-specific mitigation strategies and challenges of reaching domestic net-zero carbon emissions in 2050. Embarking from different emission profiles and trends, we find that all of the regions have technological options and mitigation strategies to reach carbon neutrality by 2050. Regional characteristics are mostly related to different land availability, population density and population trends: While Japan is resource limited with respect to onshore wind and solar power and has constrained options for carbon dioxide removal (CDR), their declining population significantly decreases future energy demand. In contrast, Australia and the US benefit from abundant renewable resources, but face challenges to curb industry and transport emissions given increasing populations and high per-capita energy use. In the EU, lack of social acceptance or EU-wide cooperation might endanger the ongoing transition to a renewable-based power system. CDR technologies are necessary for all regions, as residual emissions cannot be fully avoided by 2050. For Australia and the US, in particular, CDR could reduce the required transition pace, depth and costs. At the same time, this creates the risk of a carbon lock-in, if decarbonization ambition is scaled down in anticipation of CDR technologies that fail to deliver. Our results suggest that industrialized economies can benefit from cooperation based on common themes and complementary strengths. This may include trade of electricity-based fuels and materials as well as the exchange of regional experience on technology scale-up and policy implementation.
  • Item
    Reducing stranded assets through early action in the Indian power sector
    (Bristol : IOP Publ., 2020) Malik, Aman; Bertram, Christoph; Despres, Jacques; Emmerling, Johannes; Fujimori, Shinichiro; Garg, Amit; Kriegler, Elmar; Luderer, Gunnar; Mathur, Ritu; Roelfsema, Mark; Shekhar, Swapnil; Vishwanathan, Saritha; Vrontisi, Zoi
    Cost-effective achievement of the Paris Agreement's long-term goals requires the unanimous phase-out of coal power generation by mid-century. However, continued investments in coal power plants will make this transition difficult. India is one of the major countries with significant under construction and planned increase in coal power capacity. To ascertain the likelihood and consequences of the continued expansion of coal power for India's future mitigation options, we use harmonised scenario results from national and global models along with projections from various government reports. Both these approaches estimate that coal capacity is expected to increase until 2030, along with rapid developments in wind and solar power. However, coal capacity stranding of the order of 133–237 GW needs to occur after 2030 if India were to pursue an ambitious climate policy in line with a well-below 2 °C target. Earlier policy strengthening starting after 2020 can reduce stranded assets (14–159 GW) but brings with it political economy and renewable expansion challenges. We conclude that a policy limiting coal plants to those under construction combined with higher solar targets could be politically feasible, prevent significant stranded capacity, and allow higher mitigation ambition in the future.
  • Item
    Energy system changes in 1.5 °C, well below 2 °C and 2 °C scenarios
    (Amsterdam : Elsevier, 2019) Gambhir, Ajay; Rogelj, Joeri; Luderer, Gunnar; Few, Sheridan; Napp, Tamaryn
    Meeting the Paris Agreement's goal to limit global warming to well below 2 °C and pursuing efforts towards 1.5 °C is likely to require more rapid and fundamental energy system changes than the previously-agreed 2 °C target. Here we assess over 200 integrated assessment model scenarios which achieve 2 °C and well-below 2 °C targets, drawn from the IPCC's fifth assessment report database combined with a set of 1.5 °C scenarios produced in recent years. We specifically assess differences in a range of near-term indicators describing CO2 emissions reductions pathways, changes in primary energy and final energy across the economy's major sectors, in addition to more detailed metrics around the use of carbon capture and storage (CCS), negative emissions, low-carbon electricity and hydrogen. © 2018 The Authors
  • Item
    Alternative carbon price trajectories can avoid excessive carbon removal
    ([London] : Nature Publishing Group UK, 2021) Strefler, Jessica; Kriegler, Elmar; Bauer, Nico; Luderer, Gunnar; Pietzcker, Robert C.; Giannousakis, Anastasis; Edenhofer, Ottmar
    The large majority of climate change mitigation scenarios that hold warming below 2 °C show high deployment of carbon dioxide removal (CDR), resulting in a peak-and-decline behavior in global temperature. This is driven by the assumption of an exponentially increasing carbon price trajectory which is perceived to be economically optimal for meeting a carbon budget. However, this optimality relies on the assumption that a finite carbon budget associated with a temperature target is filled up steadily over time. The availability of net carbon removals invalidates this assumption and therefore a different carbon price trajectory should be chosen. We show how the optimal carbon price path for remaining well below 2 °C limits CDR demand and analyze requirements for constructing alternatives, which may be easier to implement in reality. We show that warming can be held at well below 2 °C at much lower long-term economic effort and lower CDR deployment and therefore lower risks if carbon prices are high enough in the beginning to ensure target compliance, but increase at a lower rate after carbon neutrality has been reached.
  • Item
    Targeted policies can compensate most of the increased sustainability risks in 1.5 °C mitigation scenarios
    (Bristol : IOP Publ., 2018) Bertram, Christoph; Luderer, Gunnar; Popp, Alexander; Minx, Jan Christoph; Lamb, William F; Stevanović, Miodrag; Humpenöder, Florian; Giannousakis, Anastasis; Kriegler, Elmar
    Meeting the 1.5 °C goal will require a rapid scale-up of zero-carbon energy supply, fuel switching to electricity, efficiency and demand-reduction in all sectors, and the replenishment of natural carbon sinks. These transformations will have immediate impacts on various of the sustainable development goals. As goals such as affordable and clean energy and zero hunger are more immediate to great parts of global population, these impacts are central for societal acceptability of climate policies. Yet, little is known about how the achievement of other social and environmental sustainability objectives can be directly managed through emission reduction policies. In addition, the integrated assessment literature has so far emphasized a single, global (cost-minimizing) carbon price as the optimal mechanism to achieve emissions reductions. In this paper we introduce a broader suite of policies—including direct sector-level regulation, early mitigation action, and lifestyle changes—into the integrated energy-economy-land-use modeling system REMIND-MAgPIE. We examine their impact on non-climate sustainability issues when mean warming is to be kept well below 2 °C or 1.5 °C. We find that a combination of these policies can alleviate air pollution, water extraction, uranium extraction, food and energy price hikes, and dependence on negative emissions technologies, thus resulting in substantially reduced sustainability risks associated with mitigating climate change. Importantly, we find that these targeted policies can more than compensate for most sustainability risks of increasing climate ambition from 2 °C to 1.5 °C.
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.