Search Results

Now showing 1 - 10 of 12
  • Item
    Hydrogen Bonding Between Ions of Like Charge in Ionic Liquids Characterized by NMR Deuteron Quadrupole Coupling Constants—Comparison with Salt Bridges and Molecular Systems
    (Weinheim : Wiley-VCH, 2019) Khudozhitkov, Alexander E.; Neumann, Jan; Niemann, Thomas; Zaitsau, Dzmitry; Stange, Peter; Paschek, Dietmar; Stepanov, Alexander G.; Kolokolov, Daniil I.; Ludwig, Ralf
    We present deuteron quadrupole coupling constants (DQCC) for hydroxyl-functionalized ionic liquids (ILs) in the crystalline or glassy states characterizing two types of hydrogen bonding: The regular Coulomb-enhanced hydrogen bonds between cation and anion (c–a), and the unusual hydrogen bonds between cation and cation (c–c), which are present despite repulsive Coulomb forces. We measure these sensitive probes of hydrogen bonding by means of solid-state NMR spectroscopy. The DQCCs of (c–a) ion pairs and (c–c) H-bonds are compared to those of salt bridges in supramolecular complexes and those present in molecular liquids. At low temperatures, the (c–c) species successfully compete with the (c–a) ion pairs and dominate the cluster populations. Equilibrium constants obtained from molecular-dynamics (MD) simulations show van't Hoff behavior with small transition enthalpies between the differently H-bonded species. We show that cationic-cluster formation prevents these ILs from crystallizing. With cooling, the (c–c) hydrogen bonds persist, resulting in supercooling and glass formation. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding
    (Weinheim : Wiley-VCH, 2016) Knorr, Anne; Stange, Peter; Fumino, Koichi; Weinhold, Frank; Ludwig, Ralf
    Infrared spectroscopy and density functional theory calculations provide strong evidence for the formation of clusters of like-charged ions in ionic liquids. With decreasing temperature, cooperative hydrogen bonding overcomes repulsive electrostatic interaction. The resulting cyclic tetramers nicely resemble well-known molecular clusters of alcohols.
  • Item
    Highly active and selective photochemical reduction of CO2 to CO using molecular-defined cyclopentadienone iron complexes
    (Cambridge : Soc., 2015) Rosas-Hernández, Alonso; Alsabeh, Pamela G.; Barsch, Enrico; Junge, Hernrik; Ludwig, Ralf; Beller, Matthias
    Herein, we report highly active (cyclopentadienone)iron–tricarbonyl complexes for CO2 photoreduction using visible light with an Ir complex as photosensitizer and TEOA as electron/proton donor. Turnover numbers (TON) of ca. 600 (1 h) with initial turnover frequencies (TOF) up to 22.2 min−1 were observed. Operando FTIR measurements allowed for the proposal of a plausible mechanism for catalyst activation.
  • Item
    Hydrogen bonding in a mixture of protic ionic liquids: A molecular dynamics simulation study
    (Cambridge : RSC Publ., 2015) Paschek, Dietmar; Golub, Benjamin; Ludwig, Ralf
    We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF). The triethylammonium-cation acts as a hydrogen-bond donor, being able to donate a single hydrogen-bond. Both, the methylsulfonate- and the triflate-anions can act as hydrogen-bond acceptors, which can accept multiple hydrogen bonds via their respective SO3-groups. In addition, replacing a methyl-group in the methylsulfonate by a trifluoromethyl-group in the triflate significantly weakens the strength of a hydrogen bond from an adjacent triethylammonium cation to the oxygen-site in the SO3-group of the anion. Our MD simulations show that these subtle differences in hydrogen bond strength significantly affect the formation of differently-sized hydrogen-bonded aggregates in these mixtures as a function of the mixture-composition. Moreover, the reported hydrogen-bonded cluster sizes can be predicted and explained by a simple combinatorial lattice model, based on the approximate coordination number of the ions, and using statistical weights that mostly account for the fact that each anion can only accept three hydrogen bonds.
  • Item
    The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids
    (Cambridge : RSC Publ., 2015) Ludwig, Ralf
    We could show by means of dispersion-corrected DFT calculations that the interaction energy in protic ionic liquids can be dissected into Coulomb interaction, hydrogen bonding and dispersion interaction. The H-bond energy as well as the dispersion energy can be quantified to be 50 kJ mol−1 each representing ten percent of the overall interaction energy. The dispersion interaction could be dissected into two portions. One third could be related to the dispersion interaction within an ion-pair enhancing the H-bond strength, two thirds stem from dispersion interaction between the ion-pairs. This distribution of dispersion interaction is reflected in the far infrared (FIR) spectra. The H-bond band is shifted weaker than the low frequency band where the latter indicates diffuse cation–anion interaction and H-bond bending motions. Finally, we can dissect the different types of interaction energies indicating their characteristic influence on vibrational modes in the FIR.
  • Item
    Spectroscopic evidence of 'jumping and pecking' of cholinium and H-bond enhanced cation-cation interaction in ionic liquids
    (Cambridge : RSC Publ., 2015) Knorr, Anne; Fumino, Koichi; Bonsa, Anne-Marie; Ludwig, Ralf
    The subtle energy-balance between Coulomb-interaction, hydrogen bonding and dispersion forces governs the unique properties of ionic liquids. To measure weak interactions is still a challenge. This is in particular true in the condensed phase wherein a melange of different strong and directional types of interactions is present and cannot be detected separately. For the ionic liquids (2-hydroxyethyl)-trimethylammonium (cholinium) bis(trifluoro-methylsulfonyl)amide and N,N,N-trimethyl-N-propylammonium bis(trifluoromethylsulfonyl)amide which differ only in the 2-hydroxyethyl and the propyl groups of the cations, we could directly observe distinct vibrational signatures of hydrogen bonding between the cation and the anion indicated by ‘jumping and pecking’ motions of cholinium. The assignment could be confirmed by isotopic substitution H/D at the hydroxyl group of cholinium. For the first time we could also find direct spectroscopic evidence for H-bonding between like-charged ions. The repulsive Coulomb interaction between the cations is overcome by cooperative hydrogen bonding between the 2-hydroxyethyl functional groups of cholinium. This H-bond network is reflected in the properties of protic ionic liquids (PILs) such as viscosities and conductivities.
  • Item
    Deuteron quadrupole coupling constants and reorientational correlation times in protic ionic liquids
    (Cambridge : RSC Publ., 2016) Strauch, Matthias; Bonsa, Anne-Marie; Golub, Benjamin; Overbeck, Viviane; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf
    We describe a method for the accurate determination of deuteron quadrupole coupling constants χD for N–D bonds in triethylammonium-based protic ionic liquids (PILs). This approach was first introduced by Wendt and Farrar for O–D bonds in molecular liquids, and is based on the linear relationship between the deuteron quadrupole coupling constants χD, and the proton chemical shifts δ1H, as obtained from DFT calculated properties in differently sized clusters of the compounds. Thus the measurement of δ1H provides an accurate estimate for χD, which can then be used for deriving reorientational correlation-times τND, by means of NMR deuteron quadrupole relaxation time measurements. The method is applied to pure PILs including differently strong interacting anions. The obtained χD values vary between 152 and 204 kHz, depending on the cation–anion interaction strength, intensified by H-bonding. We find that considering dispersion corrections in the DFT-calculations leads to only slightly decreasing χD values. The determined reorientational correlation times indicate that the extreme narrowing condition is fulfilled for these PILs. The τc values along with the measured viscosities provide an estimate for the volume/size of the clusters present in solution. In addition, the correlation times τc, and the H-bonded aggregates were also characterized by molecular dynamics (MD) simulations.
  • Item
    Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Knorr, Anne; Ludwig, Ralf
    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.
  • Item
    Gas hydrates model for the mechanistic investigation of the Wittig reaction “on water”
    (London : RSC Publishing, 2016) Ayub, Khurshid; Ludwig, Ralf
    Theoretical mechanistic details for “on water” Wittig reaction of a stabilized ylide with benzaldehyde are presented and compared with a similar reaction under neat conditions. A gas hydrate structure consisting of 20 water molecules has been applied as a water surface for the reaction. The model is chosen to capture non-bonding interactions over a larger area in order to better account for the “on water” effect. The calculated acceleration for the cis-selective Wittig reaction is more than that for the trans-selective Wittig reaction. The “on water” acceleration for the Wittig reaction is due to greater number of non-bonding interactions in the transition state, compared to the starting material. The greater acceleration for the cis-selective Wittig over the trans-selective Wittig has been rationalized on the basis of non-bonding interactions in addition to hydrogen bonding. Besides accelerating the reaction, water also affects the pathway for the reaction. Decomposition of cisOP2 to alkene is estimated as a barrierless process. Moreover OP2 is more stable than OP1 for both cis and trans-selective Wittig reactions, opposite to what is observed for the neat reaction.
  • Item
    Theoretical mechanistic investigation of zinc(ii) catalyzed oxidation of alcohols to aldehydes and esters
    (London : RSC Publishing, 2016) Nisa, Riffat Un; Mahmood, Tariq; Ludwig, Ralf; Ayub, Khurshid
    The mechanism of the Zn(II) catalyzed oxidation of benzylic alcohol to benzaldehyde and ester by H2O2 oxidant was investigated through density functional theory methods and compared with the similar oxidation mechanisms of other late transition metals. Both inner sphere and intermediate sphere mechanisms have been analyzed in the presence and absence of pyridine-2-carboxylic acid (ligand). An intermediate sphere mechanism involving the transfer of hydrogen from alcohol to H2O2 was found to be preferred over the competitive inner sphere mechanism involving β-hydride elimination. Kinetic barriers associated with the intermediate sphere mechanism are consistent with the experimental observations, suggesting that the intermediate sphere mechanism is a plausible mechanism under these reaction conditions. The oxidation of alcohols to aldehydes (first step) is kinetically more demanding than the oxidation of hemiacetals to esters (second step). Changing the oxidant to tert-butyl hydrogen peroxide (TBHP) increases the activation barrier for the oxidation of alcohol to aldehyde by 0.4 kcal mol−1, but decreases the activation barrier by 3.24 kcal mol−1 for oxidation of hemiacetal to ester. Replacement of zinc bromide with zinc iodide causes the second step to be more demanding than the first step. Pyridine-2-carboxylic acid ligand remarkably decreases the activation barriers for the intermediate sphere pathway, whereas a less pronounced inverse effect is estimated for the inner sphere mechanism.