Search Results

Now showing 1 - 5 of 5
  • Item
    Cyclic Octamer of Hydroxyl-functionalized Cations with Net Charge Q=+8e Kinetically Stabilized by a ‘Molecular Island’ of Cooperative Hydrogen Bonds
    (Weinheim : Wiley-VCH Verl., 2020) Philipp, Jule Kristin; Fritsch, Sebastian; Ludwig, Ralf
    Cyclic octamers are well-known structural motifs in chemistry, biology and physics. These include covalently bound cyclic octameric sulphur, cylic octa-alkanes, cyclo-octameric peptides as well as hydrogen-bonded ring clusters of alcohols. In this work, we show that even calculated cyclic octamers of hydroxy-functionalized pyridinium cations with a net charge Q=+8e are kinetically stable. Eight positively charged cations are kept together by hydrogen bonding despite the strong Coulomb repulsive forces. Sufficiently long hydroxy-octyl chains prevent “Coulomb explosion” by increasing the distance between the positive charges at the pyridinium rings, reducing the Coulomb repulsion and thus strengthen hydrogen bonds between the OH groups. The eightfold positively charged cyclic octamer shows spectroscopic properties similar to those obtained for hydrogen-bonded neutral cyclic octamers of methanol. Thus, the area of the hydrogen bonded OH ring represents a ‘molecular island’ within an overall cationic environment. Although not observable, the spectroscopic properties and the correlated NBO parameters of the calculated cationic octamer support the detection of smaller cationic clusters in ionic liquids, which we observed despite the competition with ion pairs wherein attractive Coulomb forces enhance hydrogen bonding between cation and anion. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Facile Synthesis of a Stable Side-on Phosphinyne Complex by Redox Driven Intramolecular Cyclisation
    (Weinheim : Wiley-VCH, 2020) Lange, Helge; Schröder, Henning; Oberem, Elisabeth; Villinger, Alexander; Rabeah, Jabor; Ludwig, Ralf; Neymeyr, Klaus; Seidel, Wolfram W.
    Alkyne complexes with vicinal substitution by a Lewis acid and a Lewis base at the coordinated alkyne are prospective frustrated Lewis pairs exhibiting a particular mutual distance and, hence, a specific activation potential. In this contribution, investigations on the generation of a WII alkyne complex bearing a phosphine as Lewis base and a carbenium group as Lewis acid are presented. Independently on potential substrates added, an intramolecular cyclisation product was always isolated. A subsequent deprotonation step led to an unprecedented side-on λ5-phosphinyne complex, which is interpreted as highly zwitterionic according to visible absorption spectroscopy supported by TD-DFT. Low-temperature 31P NMR and EPR spectroscopic measurements combined with time-dependent IR-spectroscopic monitoring provided insights in the mechanism of the cyclisation reaction. Decomposition of the multicomponent IR spectra by multivariate curve resolution and a kinetic hard-modelling approach allowed the derivation of kinetic parameters. Assignment of the individual IR spectra to potential intermediates was provided by DFT calculations. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Metal/Metal Redox Isomerism Governed by Configuration
    (Weinheim : Wiley-VCH, 2020) Ludwig, Stephan; Helmdach, Kai; Hettenschmidt, Mareike; Oberem, Elisabeth; Rabeah, Jabor; Villinger, Alexander; Ludwig, Ralf; Seidel, Wolfram W.
    A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ-η2-C,C′-κ2-S,P-C2(PPh2)S}Ru(η5-C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side-on carbon P,S-chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like-isomer is oxidized at W while the unlike-isomer is oxidized at Ru, which is proven by IR, NIR and EPR-spectroscopy supported by spectro-electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ-η2-C,C′-κ2-S,P-C2(PPh2)S}Ru(η5-C5H5)-(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Molecular Liquids versus Ionic Liquids: The Interplay between Inter-Molecular and Intra-Molecular Hydrogen Bonding as Seen by Vaporisation Thermodynamics
    (Basel : MDPI, 2023) Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Ludwig, Ralf
    In this study, we determined the enthalpies of vaporisation for a suitable set of molecular and ionic liquids using modern techniques for vapour pressure measurements, such as the quartz crystal microbalance, thermogravimetric analysis (TGA), and gas chromatographic methods. This enabled us to measure reasonable vapour pressures, avoiding the problem of the decomposition of the ionic liquids at high temperatures. The enthalpies of vaporisation could be further analysed by applying the well-known “group contribution” methods for molecular liquids and the “centerpiece” method for ionic liquids. This combined approach allowed for the dissection of the enthalpies of vaporisation into different types of molecular interaction, including hydrogen bonding and the dispersion interaction in the liquid phase, without knowing the existing species in both the liquid and gas phases.
  • Item
    Three in One: The Versatility of Hydrogen Bonding Interaction in Halide Salts with Hydroxy-Functionalized Pyridinium Cations
    (Weinheim : Wiley-VCH Verl., 2021) Al Sheakh, Loai; Niemann, Thomas; Villinger, Alexander; Stange, Peter; Zaitsau, Dzmitry H.; Strate, Anne; Ludwig, Ralf
    The paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOCn Py]+ (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction. The X-ray structures of these omnium halides show two types of hydrogen bonding: 'intra-ionic' H-bonds, wherein the anion interacts with the hydroxy group and the positively charged ring at the same cation, and 'inter-ionic' H-bonds, wherein the anion also interacts with the hydroxy group and the ring system but of different cations. We show that hydrogen bonding is controllable by the length of the hydroxyalkyl chain and the interaction strength of the anion. Some molten halide salts exhibit a third type of hydrogen bonding. IR spectra reveal elusive H-bonds between the OH groups of cations, showing interaction between ions of like charge. They are formed despite the repulsive interaction between the like-charged ions and compete with the favored cation-anion H-bonds. All types of H-bonding are analyzed by quantum chemical methods and the natural bond orbital approach, emphasizing the importance of charge transfer in these interactions. For simple omnium salts, we evidenced three distinct types of hydrogen bonds: Three in one!