Search Results

Now showing 1 - 9 of 9
  • Item
    Polymers Diffusivity Encoded by Stimuli-Induced Phase Transition: Theory and Application to Poly(N-Isopropylacrylamide) with Hydrophilic and Hydrophobic End Groups
    (Weinheim : Wiley-VCH, 2018) Schweizerhof, Sjören; Demco, Dan Eugen; Mourran, Ahmed; Fechete, Radu; Möller, Martin
    The self-diffusion of various nano-objects investigated by high-resolution nuclear magnetic resonance diffusometry proves to be an efficient method for the characterization of dynamics, aggregation kinetic, and matrix morphology. This study investigates how the two-state model and Boltzmann function approach can be used for the evaluation of the thermodynamic parameters of temperature-induced phase transition encoded in polymer diffusivity. The characteristics of the phase transition given by the transition temperature, change of entropy, and width of transition are obtained for poly(N-isopropylacrylamide) (PNIPAm) linear polymers with hydrophilic and hydrophobic end-group functionalization. The effect of end groups upon the polymer diffusivity is investigated as a function of molecular weight (M n), from which fractal dimensions and hydrodynamic drag coefficients are obtained. The PNIPAm diffusivity is affected strongly by the end groups, and it is reflected in the hydrodynamic radius dependence upon molecular weight that obeys different power-law relations. In this study, the synthesis of α-ω-heterotelechelic PNIPAm of different molecular weights with a thiol end group and a hydrophilic NIPAm-like as well as a hydrophobic benzyl end group are described by reversible addition–fragmentation chain-transfer polymerization.
  • Item
    Synthesis, Characterization, and Antimicrobial Properties of Peptides Mimicking Copolymers of Maleic Anhydride and 4-Methyl-1-pentene
    (Basel : Molecular Diversity Preservation International (MDPI), 2018) Szkudlarek, Marian; Heine, Elisabeth; Keul, Helmut; Beginn, Uwe; Möller, Martin
    Synthetic amphiphilic copolymers with strong antimicrobial properties mimicking natural antimicrobial peptides were obtained via synthesis of an alternating copolymer of maleic anhydride and 4-methyl-1-pentene. The obtained copolymer was modified by grafting with 3-(dimethylamino)-1-propylamine (DMAPA) and imidized in a one-pot synthesis. The obtained copolymer was modified further to yield polycationic copolymers by means of quaternization with methyl iodide and dodecyl iodide, as well as by being sequentially quaternized with both of them. The antimicrobial properties of obtained copolymers were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. Both tested quaternized copolymers were more active against the Gram-negative E. coli than against the Gram-positive S. aureus. The copolymer modified with both iodides was best when tested against E. coli and, comparing all three copolymers, also exhibited the best effect against S. aureus. Moreover, it shows (limited) selectivity to differentiate between mammalian cells and bacterial cell walls. Comparing the minimum inhibitory concentration (MIC) of Nisin against the Gram-positive bacteria on the molar basis instead on the weight basis, the difference between the effect of Nisin and the copolymer is significantly lower.
  • Item
    Novel Antibacterial Polyglycidols: Relationship between Structure and Properties
    (Basel : MDPI, 2018) Marquardt, Fabian; Stöcker, Cornelia; Gartzen, Rita; Heine, Elisabeth; Keul, Helmut; Möller, Martin
    Antimicrobial polymers are an attractive alternative to low molecular weight biocides, because they are non-volatile, chemically stable, and can be used as non-releasing additives. Polymers with pendant quaternary ammonium groups and hydrophobic chains exhibit antimicrobial properties due to the electrostatic interaction between polymer and cell wall, and the membrane disruptive capabilities of the hydrophobic moiety. Herein, the synthesis of cationic–hydrophobic polyglycidols with varying structures by post-polymerization modification is presented. The antimicrobial properties of the prepared polyglycidols against E. coli and S. aureus are examined. Polyglycidol with statistically distributed cationic and hydrophobic groups (cationic–hydrophobic balance of 1:1) is compared to (i) polyglycidol with a hydrophilic modification at the cationic functionality; (ii) polyglycidol with both—cationic and hydrophobic groups—at every repeating unit; and (iii) polyglycidol with a cationic–hydrophobic balance of 1:2. A relationship between structure and properties is presented.
  • Item
    SET-LRP in biphasic mixtures of fluorinated alcohols with water
    (Cambridge : RSC Publ., 2018) Moreno, Adrian; Liu, Tong; Ding, Liang; Buzzacchera, Irene; Galià, Marina; Möller, Martin; Wilson, Christopher J.; Lligadas, Gerard; Percec, Virgil
    Biphasic-binary mixtures of 2,2,2-trifluoroethanol (TFE) or 2,2,3,3-tetrafluoropropanol (TFP) with water were used as reaction media to synthesize well-defined poly(methyl acrylate) (PMA) with chain end functionality close to 100% by SET-LRP. Non-activated Cu(0) wire was used as a catalyst, taking advantage of the Cu(0)-activation property that these fluorinated alcohols possess. Biphasic-binary mixtures of water, containing a ligand and Cu(II)Br2 either generated by disproportionation of Cu(I)Br or externally added, and an organic solvent, containing a monomer and a polymer, were studied. Two N-ligands were investigated: the classic tris(2-dimethylaminoethyl)amine (Me6-TREN) and tris(2-aminoethyl)amine (TREN), as a more economically attractive alternative for technological purposes. The results reported here support the replacement of Me6-TREN by TREN, taking into account the fact that the latter requires small loadings of an externally added Cu(II)Br2 deactivator and a ligand in the water phase to mediate a living radical polymerization process. Both catalytic systems ensure efficient SET-LRP processes with first order kinetics to high conversion, linear dependence of experimental Mn on conversion, narrow molecular weight distribution, and near-quantitative chain end functionality.
  • Item
    Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
    ([London] : Nature Publishing Group UK, 2018) Zhao, Yongliang; Liu, Junli; Chen, Zhi; Zhu, Xiaomin; Möller, Martin
    Double emulsions are complex fluid systems, in which droplets of a dispersed liquid phase contain even smaller dispersed liquid droplets. Particularly, water-in-oil-in-water double emulsions provide significant advantages over simple oil-in-water emulsions for microencapsulation, such as carrier of both aqueous and oily payloads and sustained release profile. However, double emulsions are thermodynamically unstable systems consisting typically of relatively large droplets. Here we show that nanoscale water-in-oil-in-water double emulsions can be prepared by adding a silica precursor polymer, hyperbranched polyethoxysiloxane, to the oil phase without any additional surfactants. The resulting double miniemulsions are transformed to robust water@SiO2@polymer@SiO2 nanocapsules via conversion of the precursor to silica and polymerization of the oil phase. Other intriguing nanostructures like nanorattles and Janus-like nanomushrooms can also be obtained by changing preparation conditions. This simple surfactant-free double miniemulsion polymerization technique opens a promising avenue for mass production of various complex hybrid nanostructures that are amenable to numerous applications.
  • Item
    Influence of Polycation Composition on Electrochemical Film Formation
    (Basel : MDPI, 2018) Schneider, Sabine; Janssen, Corinna; Klindtworth, Elisabeth; Mergel, Olga; Möller, Martin; Plamper, Felix
    The effect of polyelectrolyte composition on the electrodeposition onto platinum is investigated using a counterion switching approach. Film formation of preformed polyelectrolytes is triggered by oxidation of hexacyanoferrates(II) (ferrocyanide), leading to polyelectrolyte complexes, which are physically crosslinked by hexacyanoferrate(III) (ferricyanide) ions due to preferential ferricyanide/polycation interactions. In this study, the electrodeposition of three different linear polyelectrolytes, namely quaternized poly[2-(dimethylamino)ethyl methacrylate] (i.e., poly{[2-(methacryloyloxy)ethyl]trimethylammonium chloride}; PMOTAC), quaternized poly[2-(dimethylamino)ethyl acrylate] (i.e., poly{[2-(acryloyloxy)ethyl]trimethylammonium chloride}; POTAC), quaternized poly[N-(3-dimethylaminopropyl)methacrylamide] (i.e., poly{[3-(methacrylamido)propyl]trimethylammonium chloride}; PMAPTAC) and different statistical copolymers of these polyelectrolytes with N-(3-aminopropyl)methacrylamide (APMA), are studied. Hydrodynamic voltammetry utilizing a rotating ring disk electrode (RRDE) shows the highest deposition efficiency DE for PMOTAC over PMAPTAC and over POTAC. Increasing incorporation of APMA weakens the preferred interaction of the quaternized units with the hexacyanoferrate(III) ions. At a sufficient APMA content, electrodeposition can thus be prevented. Additional electrochemical quartz crystal microbalance measurements reveal the formation of rigid polyelectrolyte films being highly crosslinked by the hexacyanoferrate(III) ions. Results indicate a different degree of water incorporation into these polyelectrolyte films. Hence, by adjusting the polycation composition, film properties can be tuned, while different chemistries can be incorporated into these electrodeposited thin hydrogel films.
  • Item
    Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium-Part 2
    (Basel : MDPI, 2018) Höck, Heidi; Engel, Stefan; Weingarten, Simone; Keul, Helmut; Schwaneberg, Ulrich; Möller, Martin; Bocola, Marco
    Enzyme-catalyzed ring-opening polymerization of lactones is a method of increasing interest for the synthesis of polyesters. In the present work, we investigated which changes in the structure of Candida antarctica lipase B (CaLB) shift the catalytic equilibrium between esterification and hydrolysis towards polymerization. Therefore, we present two concepts: (i) removing the glycosylation of CaLB to increase the surface hydrophobicity; and (ii) introducing a hydrophobic lid adapted from Pseudomonas cepacia lipase (PsCL) to enhance the interaction of a growing polymer chain to the elongated lid helix. The deglycosylated CaLB (CaLB-degl) was successfully generated by site-saturation mutagenesis of asparagine 74. Furthermore, computational modeling showed that the introduction of a lid helix at position Ala148 was structurally feasible and the geometry of the active site remained intact. Via overlap extension PCR the lid was successfully inserted, and the variant was produced in large scale in Pichia pastoris with glycosylation (CaLB-lid) and without (CaLB-degl-lid). While the lid variants show a minor positive effect on the polymerization activity, CaLB-degl showed a clearly reduced hydrolytic and enhanced polymerization activity. Immobilization in a hydrophobic polyglycidol-based microgel intensified this effect such that a higher polymerization activity was achieved, compared to the “gold standard” Novozym® 435.
  • Item
    Solubility, Emulsification and Surface Properties of Maleic Anhydride, Perfluorooctyl and Alkyl Meth-Acrylate Terpolymers
    (Basel : MDPI, 2018) Szkudlarek, Marian; Beginn, Uwe; Keul, Helmut; Möller, Martin
    The solubility of terpolymers containing alkyl, and perfluoroalkyl side chains as well as succinic acid moieties in the main chain, P[RFMA0.2-co-RHMA0.65-co-MAH0.15] (RH = C4H9- or C12H25-, RF- = C10H4F19-) with ca. 20 mol % fluorinated side chains and 10–22 mol % of succinic anhydride rings was tested in a number of solvents varying from water to non polar mineral oils. The polymers are well soluble in fluorinated solvents like Freon-113® and 1,3-bis(trifluoromethyl) benzene, in semi-polar solvents like chloroform, THF or lower esters and also in hydrocarbons with polymers containing dodecyl methacrylate. In self-emulsification experiments, a stable water emulsion of P[F8H2MA0.2-co-BMA0.65-co-MAH0.15] was obtained. The dispersability and emulsification of these polymers in mixtures of organic solvents and water yielded stable emulsions in the presence of additional surfactant. Thin films coated from organic solutions as well as from emulsions on glass resulted in water and oil-repelling surfaces with contact angles up to 140° against water and 71° against hexadecane. An enhancing effect of annealing was not observed.
  • Item
    Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes
    (Washington, DC : National Acad. of Sciences, 2018) Xiao, Qi; Ludwig, Anna-Kristin; Romanò, Cecilia; Buzzacchera, Irene; Sherman, Samuel E.; Vetro, Maria; Vértesy, Sabine; Kaltner, Herbert; Reed, Ellen H.; Möller, Martin; Wilson, Christopher J.; Hammer, Daniel A.; Oscarson, Stefan; Klein, Michael L.; Gabius, Hans-Joachim; Percec, Virgil
    Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.