Search Results

Now showing 1 - 10 of 19
  • Item
    CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels
    (Basel : MDPI, 2016) Engel, Stefan; Höck, Heidi; Bocola, Marco; Keul, Helmut; Schwaneberg, Ulrich; Möller, Martin
    The enzymatic ring-opening polymerization of lactones is a method of increasing interest for the synthesis of biodegradable and biocompatible polymers. In the past it was shown that immobilization of Candida antarctica lipase B (CaLB) and the reaction medium play an important role in the polymerization ability especially of medium ring size lactones like ε-caprolactone (ε-CL). We investigated a route for the preparation of compartmentalized microgels based on poly(glycidol) in which CaLB was immobilized to increase its esterification ability. To find the ideal environment for CaLB, we investigated the acceptable water concentration and the accessibility for the monomer in model polymerizations in toluene and analyzed the obtained oligomers/polymers by NMR and SEC. We observed a sufficient accessibility for ε-CL to a toluene like hydrophobic phase imitating a hydrophobic microgel. Comparing free CaLB and Novozym® 435 we found that not the monomer concentration but rather the solubility of the enzyme, as well as the water concentration, strongly influences the equilibrium of esterification and hydrolysis. On the basis of these investigations, microgels of different polarity were prepared and successfully loaded with CaLB by physical entrapment. By comparison of immobilized and free CaLB, we demonstrated an effect of the hydrophobicity of the microenvironment of CaLB on its enzymatic activity.
  • Item
    Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings
    (Columbus, Ohio : American Chemical Society, 2017) Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J.; Rodriguez-Emmenegger, Cesar
    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
  • Item
    Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium-Part 2
    (Basel : MDPI, 2018) Höck, Heidi; Engel, Stefan; Weingarten, Simone; Keul, Helmut; Schwaneberg, Ulrich; Möller, Martin; Bocola, Marco
    Enzyme-catalyzed ring-opening polymerization of lactones is a method of increasing interest for the synthesis of polyesters. In the present work, we investigated which changes in the structure of Candida antarctica lipase B (CaLB) shift the catalytic equilibrium between esterification and hydrolysis towards polymerization. Therefore, we present two concepts: (i) removing the glycosylation of CaLB to increase the surface hydrophobicity; and (ii) introducing a hydrophobic lid adapted from Pseudomonas cepacia lipase (PsCL) to enhance the interaction of a growing polymer chain to the elongated lid helix. The deglycosylated CaLB (CaLB-degl) was successfully generated by site-saturation mutagenesis of asparagine 74. Furthermore, computational modeling showed that the introduction of a lid helix at position Ala148 was structurally feasible and the geometry of the active site remained intact. Via overlap extension PCR the lid was successfully inserted, and the variant was produced in large scale in Pichia pastoris with glycosylation (CaLB-lid) and without (CaLB-degl-lid). While the lid variants show a minor positive effect on the polymerization activity, CaLB-degl showed a clearly reduced hydrolytic and enhanced polymerization activity. Immobilization in a hydrophobic polyglycidol-based microgel intensified this effect such that a higher polymerization activity was achieved, compared to the “gold standard” Novozym® 435.
  • Item
    High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices
    (Basel : MDPI, 2019) Jans, Alexander; Lölsberg, Jonas; Omidinia-Anarkoli, Abdolrahman; Viermann, Robin; Möller, Martin; De Laporte, Laura; Wessling, Matthias; Kuehne, Alexander J. C.
    Double emulsions are useful geometries as templates for core-shell particles, hollow sphere capsules, and for the production of biomedical delivery vehicles. In microfluidics, two approaches are currently being pursued for the preparation of microfluidic double emulsion devices. The first approach utilizes soft lithography, where many identical double-flow-focusing channel geometries are produced in a hydrophobic silicone matrix. This technique requires selective surface modification of the respective channel sections to facilitate alternating wetting conditions of the channel walls to obtain monodisperse double emulsion droplets. The second technique relies on tapered glass capillaries, which are coaxially aligned, so that double emulsions are produced after flow focusing of two co-flowing streams. This technique does not require surface modification of the capillaries, as only the continuous phase is in contact with the emulsifying orifice; however, these devices cannot be fabricated in a reproducible manner, which results in polydisperse double emulsion droplets, if these capillary devices were to be parallelized. Here, we present 3D printing as a means to generate four identical and parallelized capillary device architectures, which produce monodisperse double emulsions with droplet diameters in the range of 500 µm. We demonstrate high throughput synthesis of W/O/W and O/W/O double emulsions, without the need for time-consuming surface treatment of the 3D printed microfluidic device architecture. Finally, we show that we can apply this device platform to generate hollow sphere microgels.
  • Item
    Novel Antibacterial Polyglycidols: Relationship between Structure and Properties
    (Basel : MDPI, 2018) Marquardt, Fabian; Stöcker, Cornelia; Gartzen, Rita; Heine, Elisabeth; Keul, Helmut; Möller, Martin
    Antimicrobial polymers are an attractive alternative to low molecular weight biocides, because they are non-volatile, chemically stable, and can be used as non-releasing additives. Polymers with pendant quaternary ammonium groups and hydrophobic chains exhibit antimicrobial properties due to the electrostatic interaction between polymer and cell wall, and the membrane disruptive capabilities of the hydrophobic moiety. Herein, the synthesis of cationic–hydrophobic polyglycidols with varying structures by post-polymerization modification is presented. The antimicrobial properties of the prepared polyglycidols against E. coli and S. aureus are examined. Polyglycidol with statistically distributed cationic and hydrophobic groups (cationic–hydrophobic balance of 1:1) is compared to (i) polyglycidol with a hydrophilic modification at the cationic functionality; (ii) polyglycidol with both—cationic and hydrophobic groups—at every repeating unit; and (iii) polyglycidol with a cationic–hydrophobic balance of 1:2. A relationship between structure and properties is presented.
  • Item
    Synthesis of Polystyrene⁻Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches
    (Basel : MDPI, 2017) Mann, Daniel; Voogt, Stefanie; Keul, Helmut; Möller, Martin; Verheijen, Marcel; Buskens, Pascal
    Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. Very recently, we reported the colloidal synthesis of Au semishells, making use of polystyrene–polyphenylsiloxane Janus particles as an intermediate product (Chem. Commun. 2017, 53, 3898–3901). Here, we demonstrate that these Janus particles are realized through colloidal assembly of spherical glucose-functionalized polystyrene particles and an emulsion of phenyltrimethoxysilane in aqueous ammonia, followed by interfacial polycondensation to form the polyphenylsiloxane patch. Both the polystyrene spheres and the emulsion of Ph-TMS in aqueous ammonia are stabilized by a surfmer—a reactive surfactant. The colloidal assembly reported in this manuscript proceeds with an unexpected high selectivity, which makes this process exceptionally interesting for the synthesis of Janus particles. Furthermore, we report insights into the details of the mechanism of formation of these Janus particles, and apply those to adapt the synthesis conditions to produce polystyrene particles selectively decorated with multiple polyphenylsiloxane patches, e.g., raspberry particles.
  • Item
    Screening Libraries of Amphiphilic Janus Dendrimers Based on Natural Phenolic Acids to Discover Monodisperse Unilamellar Dendrimersomes
    (Columbus, Ohio : American Chemical Society, 2019) Buzzacchera, Irene; Xiao, Qi; Han, Hong; Rahimi, Khosrow; Li, Shangda; Kostina, Nina Yu; Toebes, B. Jelle; Wilner, Samantha E.; Möller, Martin; Rodriguez-Emmenegger, Cesar; Baumgart, Tobias; Wilson, Daniela A.; Wilson, Christopher J.; Klein, Michael L.; Percec, Virgil
    Natural, including plant, and synthetic phenolic acids are employed as building blocks for the synthesis of constitutional isomeric libraries of self-assembling dendrons and dendrimers that are the simplest examples of programmed synthetic macromolecules. Amphiphilic Janus dendrimers are synthesized from a diversity of building blocks including natural phenolic acids. They self-assemble in water or buffer into vesicular dendrimersomes employed as biological membrane mimics, hybrid and synthetic cells. These dendrimersomes are predominantly uni- or multilamellar vesicles with size and polydispersity that is predicted by their primary structure. However, in numerous cases, unilamellar dendrimersomes completely free of multilamellar assemblies are desirable. Here, we report the synthesis and structural analysis of a library containing 13 amphiphilic Janus dendrimers containing linear and branched alkyl chains on their hydrophobic part. They were prepared by an optimized iterative modular synthesis starting from natural phenolic acids. Monodisperse dendrimersomes were prepared by injection and giant polydisperse by hydration. Both were structurally characterized to select the molecular design principles that provide unilamellar dendrimersomes in higher yields and shorter reaction times than under previously used reaction conditions. These dendrimersomes are expected to provide important tools for synthetic cell biology, encapsulation, and delivery.
  • Item
    Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating
    (Weinheim : Wiley-VCH, 2017) Mourran, Ahmed; Zhang, Hang; Vinokur, Rostislav; Möller, Martin
    A soft microrobot composed of a microgel and driven by the light-controlled nonequilibrium dynamics of volume changes is presented. The photothermal response of the microgel, containing plasmonic gold nanorods, enables fast heating/cooling dynamics. Mastering the nonequilibrium response provides control of the complex motion, which goes beyond what has been so far reported for hydrophilic microgels.
  • Item
    Homoserine Lactone as a Structural Key Element for the Synthesis of Multifunctional Polymers
    (Basel : MDPI, 2017) Marquardt, Fabian; Mommer, Stefan; Lange, Justin; Jeschenko, Pascal M.; Keul, Helmut; Möller, Martin
    The use of bio-based building blocks for polymer synthesis represents a milestone on the way to “green” materials. In this work, two synthetic strategies for the preparation of multifunctional polymers are presented in which the key element is the functionality of homoserine lactone. First, the synthesis of a bis cyclic coupler based on a thiolactone and homoserine lactone is displayed. This coupler was evaluated regarding its regioselectivity upon reaction with amines and used in the preparation of multifunctional polymeric building blocks by reaction with diamines. Furthermore, a linear polyglycidol was functionalized with homoserine lactone. The resulting polyethers with lactone groups in the side chain were converted to cationic polymers by reaction with 3-(dimethylamino)-1-propylamine followed by quaternization with methyl iodide.
  • Item
    Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers
    ([London] : Nature Publishing Group UK, 2017) He, Hongkun; Rahimi, Khosrow; Zhong, Mingjiang; Mourran, Ahmed; Luebke, David R.; Nulwala, Hunaid B.; Möller, Martin; Matyjaszewski, Krzysztof
    Cubosomes are micro- and nanoparticles with a bicontinuous cubic two-phase structure, reported for the self-assembly of low molecular weight surfactants, for example, lipids, but rarely formed by polymers. These objects are characterized by a maximum continuous interface and high interface to volume ratio, which makes them promising candidates for efficient adsorbents and host-guest applications. Here we demonstrate self-assembly to nanoscale cuboidal particles with a bicontinuous cubic structure by amphiphilic poly(ionic liquid) diblock copolymers, poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazolium bis(trifluoromethylsulfonyl)imide, in a mixture of tetrahydrofuran and water under optimized conditions. Structure determining parameters include polymer composition and concentration, temperature, and the variation of the solvent mixture. The formation of the cubosomes can be explained by the hierarchical interactions of the constituent components. The lattice structure of the block copolymers can be transferred to the shape of the particle as it is common for atomic and molecular faceted crystals.