Search Results

Now showing 1 - 3 of 3
  • Item
    Thermodynamic Parameters of Temperature-Induced Phase Transition for Brushes onto Nanoparticles: Hydrophilic versus Hydrophobic End-Groups Functionalization
    (Weinheim : Wiley-VCH, 2017) Schweizerhof, Sjören; Demco, Dan Eugen; Mourran, Ahmed; Keul, Helmut; Fechete, Radu; Möller, Martin
    Quantification of the stimuli-responsive phase transition in polymers is topical and important for the understanding and development of novel stimuli-responsive materials. The temperature-induced phase transition of poly(N-isopropylacrylamide) (PNIPAm) with one thiol end group depends on the confinement—free polymer or polymer brush—on the molecular weight and on the nature of the second end. This paper describes the synthesis of heterotelechelic PNIPAm of different molecular weights with a thiol end group—that specifically binds to gold nanorods and a hydrophilic NIPAm end group by reversible addition-fragmentation chain-transfer polymerization. Proton high-resolution magic angle sample spinning NMR spectra are used as an indicator of the polymer chain conformations. The characteristics of phase transition given by the transition temperature, entropy, and width of transition are obtained by a two-state model. The dependence of thermodynamic parameters on molecular weight is compared for hydrophilic and hydrophobic end functional-free polymers and brushes.
  • Item
    4D Printing of a Light-Driven Soft Actuator with Programmed Printing Density
    (Washington, DC : ACS Publications, 2020) Nishiguchi, Akihiro; Zhang, Hang; Schweizerhof, Sjören; Schulte, Marie Friederike; Mourran, Ahmed; Möller, Martin
    There is a growing interest in the concept of four-dimensional (4D) printing that combines a three-dimensional (3D) manufacturing process with dynamic modulation for bioinspired soft materials exhibiting more complex functionality. However, conventional approaches have drawbacks of low resolution, control of internal micro/nanostructure, and creation of fast, complex actuation due to a lack of high-resolution fabrication technology and suitable photoresist for soft materials. Here, we report an approach of 4D printing that develops a bioinspired soft actuator with a defined 3D geometry and programmed printing density. Multiphoton lithography (MPL) allows for controlling printing density in gels at pixel-by-pixel with a resolution of a few hundreds of nanometers, which tune swelling behaviors of gels in response to external stimuli. We printed a 3D soft actuator composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) and gold nanorods (AuNRs). To improve the resolution of printing, we synthesized a functional, thermoresponsive macrocrosslinker. Through plasmonic heating by AuNRs, nanocomposite-based soft actuators undergo nonequilibrium, programmed, and fast actuation. Light-mediated manufacture and manipulation (MPL and photothermal effect) offer the feasibility of 4D printing toward adaptive bioinspired soft materials. Copyright © 2020 American Chemical Society.
  • Item
    Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating
    (Weinheim : Wiley-VCH, 2017) Mourran, Ahmed; Zhang, Hang; Vinokur, Rostislav; Möller, Martin
    A soft microrobot composed of a microgel and driven by the light-controlled nonequilibrium dynamics of volume changes is presented. The photothermal response of the microgel, containing plasmonic gold nanorods, enables fast heating/cooling dynamics. Mastering the nonequilibrium response provides control of the complex motion, which goes beyond what has been so far reported for hydrophilic microgels.