Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty

2018, Schleussner, Carl-Friedrich, Deryng, Delphine, Müller, Christoph, Elliott, Joshua, Saeed, Fahad, Folberth, Christian, Liu, Wenfeng, Wang, Xuhui, Pugh, Thomas A. M., Thiery, Wim, Seneviratne, Sonia I., Rogelj, Joeri

Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.

Loading...
Thumbnail Image
Item

Future climate change significantly alters interannual wheat yield variability over half of harvested areas

2021-9-3, Liu, Weihang, Ye, Tao, Jägermeyr, Jonas, Müller, Christoph, Chen, Shuo, Liu, Xiaoyan, Shi, Peijun

Climate change affects the spatial and temporal distribution of crop yields, which can critically impair food security across scales. A number of previous studies have assessed the impact of climate change on mean crop yield and future food availability, but much less is known about potential future changes in interannual yield variability. Here, we evaluate future changes in relative interannual global wheat yield variability (the coefficient of variation (CV)) at 0.25° spatial resolution for two representative concentration pathways (RCP4.5 and RCP8.5). A multi-model ensemble of crop model emulators based on global process-based models is used to evaluate responses to changes in temperature, precipitation, and CO2. The results indicate that over 60% of harvested areas could experience significant changes in interannual yield variability under a high-emission scenario by the end of the 21st century (2066–2095). About 31% and 44% of harvested areas are projected to undergo significant reductions of relative yield variability under RCP4.5 and RCP8.5, respectively. In turn, wheat yield is projected to become more unstable across 23% (RCP4.5) and 18% (RCP8.5) of global harvested areas—mostly in hot or low fertilizer input regions, including some of the major breadbasket countries. The major driver of increasing yield CV change is the increase in yield standard deviation, whereas declining yield CV is mostly caused by stronger increases in mean yield than in the standard deviation. Changes in temperature are the dominant cause of change in wheat yield CVs, having a greater influence than changes in precipitation in 53% and 72% of global harvested areas by the end of the century under RCP4.5 and RCP8.5, respectively. This research highlights the potential challenges posed by increased yield variability and the need for tailored regional adaptation strategies.

Loading...
Thumbnail Image
Item

Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets

2018, Wartenburger, Richard, Seneviratne, Sonia I, Hirschi, Martin, Chang, Jinfeng, Ciais, Philippe, Deryng, Delphine, Elliott, Joshua, Folberth, Christian, Gosling, Simon N, Gudmundsson, Lukas, Henrot, Alexandra-Jane, Hickler, Thomas, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Leng, Guoyong, Liu, Junguo, Liu, Xingcai, Masaki, Yoshimitsu, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Nishina, Kazuya, Orth, Rene, Pokhrel, Yadu, Pugh, Thomas A M, Satoh, Yusuke, Schaphoff, Sibyll, Schmid, Erwin, Sheffield, Justin, Stacke, Tobias, Steinkamp, Joerg, Tang, Qiuhong, Thiery, Wim, Wada, Yoshihide, Wang, Xuhui, Weedon, Graham P, Yang, Hong, Zhou, Tian

Actual land evapotranspiration (ET) is a key component of the global hydrological cycle and an essential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties that are impeding a precise attribution of human-induced climate change. Here, we aim at comparing a range of independent global monthly land ET estimates with historical model simulations from the global water, agriculture, and biomes sectors participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use the EartH2Observe Tier-1 dataset (E2O), two commonly used reanalyses, a pre-compiled ensemble product (LandFlux-EVAL), and an updated collection of recently published datasets that algorithmically derive ET from observations or observations-based estimates (diagnostic datasets). A cluster analysis is applied in order to identify spatio-temporal differences among all datasets and to thus identify factors that dominate overall uncertainties. The clustering is controlled by several factors including the model choice, the meteorological forcing used to drive the assessed models, the data category (models participating in the different sectors of ISIMIP2a, E2O models, diagnostic estimates, reanalysis-based estimates or composite products), the ET scheme, and the number of soil layers in the models. By using these factors to explain spatial and spatio-temporal variabilities in ET, we find that the model choice mostly dominates (24%–40% of variance explained), except for spatio-temporal patterns of total ET, where the forcing explains the largest fraction of the variance (29%). The most dominant clusters of datasets are further compared with individual diagnostic and reanalysis-based estimates to assess their representation of selected heat waves and droughts in the Great Plains, Central Europe and western Russia. Although most of the ET estimates capture these extreme events, the generally large spread among the entire ensemble indicates substantial uncertainties.

Loading...
Thumbnail Image
Item

First process-based simulations of climate change impacts on global tea production indicate large effects in the World’s major producer countries

2020, Beringer, Tim, Kulak, Michal, Müller, Christoph, Schaphoff, Sibyll, Jans, Yvonne

Modeling of climate change impacts have mainly been focused on a small number of annual staple crops that provide most of the world's calories. Crop models typically do not represent perennial crops despite their high economic, nutritional, or cultural value. Here we assess climate change impacts on global tea production, chosen because of its high importance in culture and livelihoods of people around the world. We extended the dynamic global vegetation model with managed land, LPJmL4, global crop model to simulate the cultivation of tea plants. Simulated tea yields were validated and found in good agreement with historical observations as well as experiments on the effects of increasing CO2 concentrations. We then projected yields into the future under a range of climate scenarios from the Inter-Sectoral Impact Model Intercomparison Project. Under current irrigation levels and lowest climate change scenarios, tea yields are expected to decrease in major producing countries. In most climate scenarios, we project that tea yields are set to increase in China, India, and Vietnam. However, yield losses are expected to affect Kenya, Indonesia, and Sri Lanka. If abundant water supply and full irrigation is assumed for all tea cultivation areas, yields are projected to increase in all regions.

Loading...
Thumbnail Image
Item

Impacts of climate change on global food trade networks

2022, Hedlund, Johanna, Carlsen, Henrik, Croft, Simon, West, Chris, Bodin, Örjan, Stokeld, Emilie, Jägermeyr, Jonas, Müller, Christoph

Countries’ reliance on global food trade networks implies that regionally different climate change impacts on crop yields will be transmitted across borders. This redistribution constitutes a significant challenge for climate adaptation planning and may affect how countries engage in cooperative action. This paper investigates the long-term (2070-2099) potential impacts of climate change on global food trade networks of three key crops: wheat, rice and maize. We propose a simple network model to project how climate change impacts on crop yields may be translated into changes in trade. Combining trade and climate impact data, our analysis proceeds in three steps. First, we use network community detection to analyse how the concentration of global production in present-day trade communities may become disrupted with climate change impacts. Second, we study how countries may change their network position following climate change impacts. Third, we study the total climate-induced change in production plus import within trade communities. Results indicate that the stability of food trade network structures compared to today differs between crops, and that countries’ maize trade is least stable under climate change impacts. Results also project that threats to global food security may depend on production change in a few major global producers, and whether trade communities can balance production and import loss in some vulnerable countries. Overall, our model contributes a baseline analysis of cross-border climate impacts on food trade networks.

Loading...
Thumbnail Image
Item

Comparing impacts of climate change and mitigation on global agriculture by 2050

2018, van Meijl, Hans, Havlik, Petr, Lotze-Campen, Hermann, Stehfest, Elke, Witzke, Peter, Pérez Domínguez, Ignacio, Bodirsky, Benjamin Leon, van Dijk, Michiel, Doelman, Jonathan, Fellmann, Thomas, Humpenöder, Florian, Koopman, Jason F. L., Müller, Christoph, Popp, Alexander, Tabeau, Andrzej, Valin, Hugo, van Zeist, Willem-Jan

Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.