Search Results

Now showing 1 - 3 of 3
  • Item
    LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
    (Katlenburg-Lindau : Copernicus, 2023) Ostberg, Sebastian; Müller, Christoph; Heinke, Jens; Schaphoff, Sibyll
    We present the Land Input Generator (LandInG) version 1.0, a new toolbox for generating input datasets for terrestrial ecosystem models (TEMs) from diverse and partially conflicting data sources. While LandInG 1.0 is applicable to process data for any TEM, it is developed specifically for the open-source dynamic global vegetation, hydrology, and crop growth model LPJmL (Lund-Potsdam-Jena with managed Land). The toolbox documents the sources and processing of data to model inputs and allows for easy changes to the spatial resolution. It is designed to make inconsistencies between different sources of data transparent so that users can make their own decisions on how to resolve these should they not be content with the default assumptions made here. As an example, we use the toolbox to create input datasets at 5 and 30 arcmin spatial resolution covering land, country, and region masks, soil, river networks, freshwater reservoirs, irrigation water distribution networks, crop-specific annual land use, fertilizer, and manure application. We focus on the toolbox describing the data processing rather than only publishing the datasets as users may want to make different choices for reconciling inconsistencies, aggregation, spatial extent, or similar. Also, new data sources or new versions of existing data become available continuously, and the toolbox approach allows for incorporating new data to stay up to date.
  • Item
    Global cotton production under climate change – Implications for yield and water consumption
    (Munich : EGU, 2021) Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph
    Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, the growth of and irrigation water demand on cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL (Lund Potsdam Jena managed land). We find our modeled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) protocol, we employ an ensemble of five general circulation models under four representative concentration pathways (RCPs) for the 2011 2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from _ 65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production rises by more than 50% by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-Third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000m3 t1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000m3 t1, and reduction continues by up to 30% in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature acts in the opposite direction. Ignoring beneficial CO2 effects, global VWC of cotton would increase for all RCPs except RCP2.6, reaching more than 5000m3 t1 by the end of the simulation period under RCP8.5. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption. The implications of climate impacts on cotton production on the one hand and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. Our results should be regarded as optimistic, because of high uncertainty with respect to CO2 fertilization and the lack of implementing processes of boll abscission under heat stress. Still, the inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    Modelling the role of livestock grazing in C and N cycling in grasslands with LPJmL5.0-grazing
    (Katlenburg-Lindau : Copernicus, 2023) Heinke, Jens; Rolinski, Susanne; Müller, Christoph
    To represent the impact of grazing livestock on carbon (C) and nitrogen (N) dynamics in grasslands, we implement a livestock module into LPJmL5.0-tillage, a global vegetation and crop model with explicit representation of managed grasslands and pastures, forming LPJmL5.0-grazing. The livestock module uses lactating dairy cows as a generic representation of grazing livestock. The new module explicitly accounts for forage quality in terms of dry-matter intake and digestibility using relationships derived from compositional analyses for different forages. Partitioning of N into milk, feces, and urine as simulated by the new livestock module shows very good agreement with observation-based relationships reported in the literature. Modelled C and N dynamics depend on forage quality (C:N ratios in grazed biomass), forage quantity, livestock densities, manure or fertilizer inputs, soil, atmospheric CO2 concentrations, and climate conditions. Due to the many interacting relationships, C sequestration, GHG emissions, N losses, and livestock productivity show substantial variation in space and across livestock densities. The improved LPJmL5.0-grazing model can now assess the effects of livestock grazing on C and N stocks and fluxes in grasslands. It can also provide insights about the spatio-temporal variability of grassland productivity and about the trade-offs between livestock production and environmental impacts.