Search Results

Now showing 1 - 2 of 2
  • Item
    Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Gross, Silke; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Freudenthaler, Volker; Esselborn, Michael
    Extensive lidar measurements of Saharan dust and biomass-burning smoke were performed with one airborne and three ground-based instruments in the framework of the second part of the SAharan Mineral dUst experiMent (SAMUM-2a) during January and February of 2008 at Cape Verde. Further lidar observations with one system only were conducted duringMay and June of 2008 (SAMUM-2b). The active measurements were supported by Sun photometer observations. During winter, layers of mineral dust from the Sahara and biomass-burning smoke from southern West Africa pass Cape Verde on their way to South America while pure dust layers cross the Atlantic on their way to the Caribbean during summer. The mean 500-nm aerosol optical thickness (AOT) observed during SAMUM-2a was 0.35 ± 0.18. SAMUM-2a observations showed transport of pure dust within the lowermost 1.5 km of the atmospheric column. In the height range from 1.5 to 5.0 km, mixed dust/smoke layers with mean lidar ratios of 67 ± 14 sr at 355 and 532 nm, respectively, prevailed. Within these layers, wavelength-independent linear particle depolarization ratios of 0.12–0.18 at 355, 532, and 710 nm indicate a large contribution (30–70%) of mineral dust to the measured optical properties. Ångstr¨om exponents for backscatter and extinction of around 0.7 support this finding. Mean extinction coefficients in the height range between 2 and 4 km were 66 ± 6 Mm−1 at 355 nm and 48 ± 5 Mm−1 at 532 nm. Comparisons with airborne high-spectral-resolution lidar observations show good agreement within the elevated layers. 3–5 km deep dust layers where observed during SAMUM-2b. These layers showed optical properties similar to the ones of SAMUM-1 in Morocco with a mean 500-nm AOT of 0.4 ± 0.2. Dust extinction coefficients were about 80 ± 6 Mm−1 at 355 and 532 nm. Dust lidar ratios were 53 ± 10 sr at 355 and 532 nm, respectively. Dust depolarization ratios showed an increase with wavelength from 0.31 ± 0.10 at 532 nm to 0.37 ± 0.07 at 710 nm.
  • Item
    Dust mobilization and transport in the northern Sahara during SAMUM 2006 - A meteorological overview
    (Milton Park : Taylor & Francis, 2017) Knippertz, Peter; Ansmann, Albert; Althausen, Dietrich; Müller, Detlef; Tesche, Matthias; Bierwirth, Eike; Dinter, Tilman; Müller, Thomas; Von Hoyningen-Huene, Wolfgang; Schepanski, Kerstin; Wendisch, Manfred; Heinold, Bernd; Kandler, Konrad; Petzold, Andreas; Tegen, Ina
    The SAMUM field campaign in southern Morocco in May/June 2006 provides valuable data to study the emission, and the horizontal and vertical transports of mineral dust in the Northern Sahara. Radiosonde and lidar observations show differential advection of air masses with different characteristics during stable nighttime conditions and up to 5-km deep vertical mixing in the strongly convective boundary layer during the day. Lagrangian and synoptic analyses of selected dust periods point to a topographic channel from western Tunisia to central Algeria as a dust source region. Significant emission events are related to cold surges from the Mediterranean in association with eastward passing upper-level waves and lee cyclogeneses south of the Atlas Mountains. Other relevant events are local emissions under a distinct cut-off low over northwestern Africa and gust fronts associated with dry thunderstorms over the Malian and Algerian Sahara. The latter are badly represented in analyses from the European Centre for Medium–Range Weather Forecasts and in a regional dust model, most likely due to problems with moist convective dynamics and a lack of observations in this region. This aspect needs further study. The meteorological source identification is consistent with estimates of optical and mineralogical properties of dust samples.