Search Results

Now showing 1 - 10 of 16
Loading...
Thumbnail Image
Item

3+2 + X : what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?

2019, Tesche, Matthias, Kolgotin, Alexei, Haarig, Moritz, Burton, Sharon P., Ferrare, Richard A., Hostetler, Chris A., Müller, Detlef

The typical multiwavelength aerosol lidar data set for inversion of optical to microphysical parameters is composed of three backscatter coefficients (β) at 355, 532, and 1064 nm and two extinction coefficients (α) at 355 and 532 nm. This data combination is referred to as a 3β C 2α or 3 + 2 data set. This set of data is sufficient for retrieving some important microphysical particle parameters if the particles have spherical shape. Here, we investigate the effect of including the particle linear depolarization ratio (δ) as a third input parameter for the inversion of lidar data. The inversion algorithm is generally not used if measurements show values of d that exceed 0.10 at 532 nm, i.e. in the presence of nonspherical particles such as desert dust, volcanic ash, and, under special circumstances, biomass-burning smoke. We use experimental data collected with instruments that are capable of measuring d at all three lidar wavelengths with an inversion routine that applies the spheroidal light-scattering model of Dubovik et al. (2006) with a fixed axis-ratio distribution to replicate scattering properties of non-spherical particles. The inversion gives the fraction of spheroids required to replicate the optical data as an additional output parameter. This is the first systematic test of the effect of using all theoretically possible combinations of d taken at 355, 532, and 1064 nm as input in the lidar data inversion. We find that depolarization information of at least one wavelength already provides useful information for the inversion of optical data that have been collected in the presence of non-spherical mineral dust particles. However, any choice of d will give lower values of the single-scattering albedo than the traditional 3 + 2 data set. We find that input data sets that include d355 give a spheroid fraction that closely resembles the dust ratio we obtain from using β532 and d532 in a methodology applied in aerosol-type separation. The use of d355 in data sets of two or three d? reduces the spheroid fraction that is retrieved when using d532 and d1064. Use of the latter two parameters without accounting for d355 generally leads to high spheroid fractions that we consider not trustworthy. The use of three d instead of two δ, including the constraint that one of these is measured at 355 nm does not provide any advantage over using 3 + 2 + d355 for the observations with varying contributions of mineral dust considered here. However, additional measurements at wavelengths different from 355 nm would be desirable for application to a wider range of aerosol scenarios that may include non-spherical smoke particles, which can have values of d355 that are indistinguishable from those found for mineral dust. We therefore conclude that - depending on measurement capability - the future standard input for inversion of lidar data taken in the presence of mineral dust particles and using the spheroid model of Dubovik et al. (2006) might be 3+2Cδ355 or 3 + 2 + δ355 + δ532. © 2019 The Author(s).

Loading...
Thumbnail Image
Item

The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET

2019, Baars, Holger, Ansmann, Albert, Ohneiser, Kevin, Haarig, Moritz, Engelmann, Ronny, Althausen, Dietrich, Hanssen, Ingrid, Gausa, Michael, Pietruczuk, Aleksander, Szkop, Artur, Stachlewska, Iwona S., Wang, Dongxiang, Reichardt, Jens, Skupin, Annett, Mattis, Ina, Trickl, Thomas, Vogelmann, Hannes, Navas-Guzmán, Francisco, Haefele, Alexander, Acheson, Karen, Ruth, Albert A., Tatarov, Boyan, Müller, Detlef, Hu, Qiaoyun, Podvin, Thierry, Goloub, Philippe, Veselovskii, Igor, Pietras, Christophe, Haeffelin, Martial, Fréville, Patrick, Sicard, Michaël, Comerón, Adolfo, García, Alfonso Javier Fernández, Molero Menéndez, Francisco, Córdoba-Jabonero, Carmen, Guerrero-Rascado, Juan Luis, Alados-Arboledas, Lucas, Bortoli, Daniele, Costa, Maria João, Dionisi, Davide, Liberti, Gian Luigi, Wang, Xuan, Sannino, Alessia, Papagiannopoulos, Nikolaos, Boselli, Antonella, Mona, Lucia, D’Amico, Guiseppe, Romano, Salvatore, Perrone, Maria Rita, Belegante, Livio, Nicolae, Doina, Grigorov, Ivan, Gialitaki, Anna, Amiridis, Vassilis, Soupiona, Ourania, Papayannis, Alexandros, Mamouri, Rodanthi-Elisaveth, Nisantzi, Argyro, Heese, Birgit, Hofer, Julian, Schechner, Yoav Y., Wandinger, Ulla, Pappalardo, Gelsomina

Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm−1 until the beginning of September and on the order of 1 Mm−1 (0.5–5 Mm−1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µg m−3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L−1 until the first days in September and afterwards 5–50 L−1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of −55 ∘C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and < 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.

Loading...
Thumbnail Image
Item

Arctic haze over Central Europe

2017, Heintzenberg, Jost, Tuch, Thomas, Wehner, Birgit, Wiedensohler, Alfred, Wex, Heike, Ansmann, Albert, Mattis, Ina, Müller, Detlef, Wendisch, Manfred, Eckhardt, Sabine, Stohl, Andreas

An extraordinary aerosol situation over Leipzig, Germany in April 2002 was investigated with a comprehensive set of ground-based volumetric and columnar aerosol data, combined with aerosol profiles from lidar, meteorological data from radiosondes and air mass trajectory calculations. Air masses were identified to stem from the Arctic, partly influenced by the greater Moscow region. An evaluation of ground-based measurements of aerosol size distributions during these periods showed that the number concentrations below about 70 nm in diameter were below respective long-term average data, while number, surface and volume concentrations of the particles larger than about 70 nm in diameter were higher than the long-term averages. The lidar aerosol profiles showed that the imported aerosol particles were present up to about 3 km altitude. The particle optical depth was up to 0.45 at 550 nm wavelength. With a one-dimensional spectral radiative transfer model top of the atmosphere (TOA) radiative forcing of the aerosol layer was estimated for a period with detailed vertical information. Solar aerosol radiative forcing values between −23 and −38 W m−2 were calculated, which are comparable to values that have been reported in heavily polluted continental plumes outside the respective source regions. The present report adds weight to previous findings of aerosol import to Europe, pointing to the need for attributing the three-dimensional aerosol burden to natural and anthropogenic sources as well as to aerosol imports from adjacent or distant source regions. In the present case, the transport situation is further complicated by forward trajectories, indicating that some of the observed Arctic haze may have originated in Central Europe. This aerosolwas transported to the European Arctic before being re-imported in the modified and augmented form to its initial source region.

Loading...
Thumbnail Image
Item

Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned?

2011, Ansmann, Albert, Petzold, Andreas, Kandler, Konrad, Tegen, Ina, Wendisch, Manfred, Müller, Detlef, Weinzierl, Bernadett, Müller, Thomas, Heintzenberg, Jost

Two comprehensive field campaigns were conducted in 2006 and 2008 in the framework of the Saharan Mineral Dust Experiment (SAMUM) project. The relationship between chemical composition, shape morphology, size distribution and optical effects of the dust particles was investigated. The impact of Saharan dust on radiative transfer and the feedback of radiative effects upon dust emission and aerosol transport were studied. Field observations (ground-based, airborne and remote sensing) and modelling results were compared within a variety of dust closure experiments with a strong focus on vertical profiling. For the first time, multiwavelength Raman/polarization lidars and an airborne high spectral resolution lidar were involved in major dust field campaigns and provided profiles of the volume extinction coefficient of the particles at ambient conditions (for the full dust size distribution), of particle-shape-sensitive optical properties at several wavelengths, and a clear separation of dust and smoke profiles allowing for an estimation of the single-scattering albedo of the biomass-burning aerosol. SAMUM–1 took place in southern Morocco close to the Saharan desert in the summer of 2006, whereas SAMUM–2 was conducted in Cape Verde in the outflow region of desert dust and biomass-burning smoke from western Africa in the winter of 2008. This paper gives an overview of the SAMUM concept, strategy and goals, provides snapshots (highlights) of SAMUM–2 observations and modelling efforts, summarizes main findings of SAMUM–1 and SAMUM–2 and finally presents a list of remaining problems and unsolved questions.

Loading...
Thumbnail Image
Item

Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter

2021, Kezoudi, Maria, Tesche, Matthias, Smith, Helen, Tsekeri, Alexandra, Baars, Holger, Dollner, Maximilian, Estellés, Víctor, Bühl, Johannes, Weinzierl, Bernadett, Ulanowski, Zbigniew, Müller, Detlef, Amiridis, Vassilis

This paper presents measurements of mineral dust concentration in the diameter range from 0.4 to 14.0 µm with a novel balloon-borne optical particle counter, the Universal Cloud and Aerosol Sounding System (UCASS). The balloon launches were coordinated with ground-based active and passive remote-sensing observations and airborne in situ measurements with a research aircraft during a Saharan dust outbreak over Cyprus from 20 to 23 April 2017. The aerosol optical depth at 500 nm reached values up to 0.5 during that event over Cyprus, and particle number concentrations were as high as 50 cm−3 for the diameter range between 0.8 and 13.9 µm. Comparisons of the total particle number concentration and the particle size distribution from two cases of balloon-borne measurements with aircraft observations show reasonable agreement in magnitude and shape despite slight mismatches in time and space. While column-integrated size distributions from balloon-borne measurements and ground-based remote sensing show similar coarse-mode peak concentrations and diameters, they illustrate the ambiguity related to the missing vertical information in passive sun photometer observations. Extinction coefficient inferred from the balloon-borne measurements agrees with those derived from coinciding Raman lidar observations at height levels with particle number concentrations smaller than 10 cm−3 for the diameter range from 0.8 to 13.9 µm. An overestimation of the UCASS-derived extinction coefficient of a factor of 2 compared to the lidar measurement was found for layers with particle number concentrations that exceed 25 cm−3, i.e. in the centre of the dust plume where particle concentrations were highest. This is likely the result of a variation in the refractive index and the shape and size dependency of the extinction efficiency of dust particles along the UCASS measurements. In the future, profile measurements of the particle number concentration and particle size distribution with the UCASS could provide a valuable addition to the measurement capabilities generally used in field experiments that are focussed on the observation of coarse aerosols and clouds.

Loading...
Thumbnail Image
Item

Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging

2017, Kahn, Ralph, Petzold, Andreas, Wendisch, Manfred, Bierwirth, Eike, Dinter, Tilman, Esselborn, Michael, Fiebig, Marcus, Heese, Birgit, Knippertz, Peter, Müller, Detlef, Schladitz, Alexander, Von Hoyningen-HUENE, Wolfgang

Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite’s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05–0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR’s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

Loading...
Thumbnail Image
Item

Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements

2017, Tesche, Matthias, Müller, Detlef, Gross, Silke, Ansmann, Albert, Althausen, Dietrich, Freudenthaler, Volker, Weinzierl, Bernadett, Veira, Andreas, Petzold, Andreas

Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.

Loading...
Thumbnail Image
Item

Dual-FOV Raman and Doppler lidar studies of aerosol-cloud interactions: Simultaneous profiling of aerosols, warm-cloud properties, and vertical wind

2014, Schmidt, Jörg, Ansmann, Albert, Bühl, Johannes, Baars, Holger, Wandinger, Ulla, Müller, Detlef, Malinka, Aleksey V.

For the first time, colocated dual-field of view (dual-FOV) Raman lidar and Doppler lidar observations (case studies) of aerosol and cloud optical and microphysical properties below and within thin layered liquid water clouds are presented together with an updraft and downdraft characterization at cloud base. The goal of this work is to investigate the relationship between aerosol load close to cloud base and cloud characteristics of warm (purely liquid) clouds and the study of the influence of vertical motions and turbulent mixing on this relationship. We further use this opportunity to illustrate the applicability of the novel dual-FOV Raman lidar in this field of research. The dual-FOV lidar combines the well-established multiwavelength Raman lidar technique for aerosol retrievals and the multiple-scattering Raman lidar technique for profiling of the single-scattering extinction coefficient, effective radius, number concentration of the cloud droplets, and liquid water content. Key findings of our 3 year observations are presented in several case studies of optically thin altocumulus layers occurring in the lower free troposphere between 2.5 and 4 km height over Leipzig, Germany, during clean and polluted situations. For the clouds that we observed, the most direct link between aerosol proxy (particle extinction coefficient) and cloud proxy (cloud droplet number concentration) was found at cloud base during updraft periods. Above cloud base, additional processes resulting from turbulent mixing and entrainment of dry air make it difficult to determine the direct impact of aerosols on cloud processes.

Loading...
Thumbnail Image
Item

Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006

2017, Freudenthaler, Volker, Esselborn, Michael, Wiegner, Matthias, Heese, Birgit, Tesche, Matthias, Ansmann, Albert, Müller, Detlef, Althausen, Dietrich, Wirth, Martin, Fix, Andreas, Ehret, Gerhard, Knippertz, Peter, Toledano, Carlos, Gasteiger, Josef, Garhammer, Markus, Seefeldner, Meinhard

Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.

Loading...
Thumbnail Image
Item

Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde

2017, Tesche, Matthias, Gross, Silke, Ansmann, Albert, Müller, Detlef, Althausen, Dietrich, Freudenthaler, Volker, Esselborn, Michael

Extensive lidar measurements of Saharan dust and biomass-burning smoke were performed with one airborne and three ground-based instruments in the framework of the second part of the SAharan Mineral dUst experiMent (SAMUM-2a) during January and February of 2008 at Cape Verde. Further lidar observations with one system only were conducted duringMay and June of 2008 (SAMUM-2b). The active measurements were supported by Sun photometer observations. During winter, layers of mineral dust from the Sahara and biomass-burning smoke from southern West Africa pass Cape Verde on their way to South America while pure dust layers cross the Atlantic on their way to the Caribbean during summer. The mean 500-nm aerosol optical thickness (AOT) observed during SAMUM-2a was 0.35 ± 0.18. SAMUM-2a observations showed transport of pure dust within the lowermost 1.5 km of the atmospheric column. In the height range from 1.5 to 5.0 km, mixed dust/smoke layers with mean lidar ratios of 67 ± 14 sr at 355 and 532 nm, respectively, prevailed. Within these layers, wavelength-independent linear particle depolarization ratios of 0.12–0.18 at 355, 532, and 710 nm indicate a large contribution (30–70%) of mineral dust to the measured optical properties. Ångstr¨om exponents for backscatter and extinction of around 0.7 support this finding. Mean extinction coefficients in the height range between 2 and 4 km were 66 ± 6 Mm−1 at 355 nm and 48 ± 5 Mm−1 at 532 nm. Comparisons with airborne high-spectral-resolution lidar observations show good agreement within the elevated layers. 3–5 km deep dust layers where observed during SAMUM-2b. These layers showed optical properties similar to the ones of SAMUM-1 in Morocco with a mean 500-nm AOT of 0.4 ± 0.2. Dust extinction coefficients were about 80 ± 6 Mm−1 at 355 and 532 nm. Dust lidar ratios were 53 ± 10 sr at 355 and 532 nm, respectively. Dust depolarization ratios showed an increase with wavelength from 0.31 ± 0.10 at 532 nm to 0.37 ± 0.07 at 710 nm.