Search Results

Now showing 1 - 2 of 2
  • Item
    Enabling time-resolved 2D spatial-coherence measurements using the Fourier-analysis method with an integrated curved-grating beam monitor
    (Washington, DC : Soc., 2020) Bagschik, Kai; Schneider, Michael; Wagner, Jochen; Buss, Ralph; Riepp, Matthias; Philippi-Kobs, Andre; Müller, Leonard; Roseker, Wojciech; Trinter, Florian; Hoesch, Moritz; Viefhaus, Jens; Eisebitt, Stefan; Grübel, Gerhard; Oepen, Hans Peter; Frömter, Robert
    Direct 2D spatial-coherence measurements are increasingly gaining importance at synchrotron beamlines, especially due to present and future upgrades of synchrotron facilities to diffraction-limited storage rings. We present a method to determine the 2D spatial coherence of synchrotron radiation in a direct and particularly simple way by using the Fourier-analysis method in conjunction with curved gratings. Direct photon-beam monitoring provided by a curved grating circumvents the otherwise necessary separate determination of the illuminating intensity distribution required for the Fourier-analysis method. Hence, combining these two methods allows for time-resolved spatial-coherence measurements. As a consequence, spatial-coherence degradation effects caused by beamline optics vibrations, which is one of the key issues of state-of-the-art X-ray imaging and scattering beamlines, can be identified and analyzed. © 2020 Optical Society of America.
  • Item
    Measurement of Spin Dynamics in a Layered Nickelate Using X-Ray Photon Correlation Spectroscopy: Evidence for Intrinsic Destabilization of Incommensurate Stripes at Low Temperatures
    (College Park, Md. : APS, 2021) Ricci, Alessandro; Poccia, Nicola; Campi, Gaetano; Mishra, Shrawan; Müller, Leonard; Joseph, Boby; Shi, Bo; Zozulya, Alexey; Buchholz, Marcel; Trabant, Christoph; Lee, James C. T.; Viefhaus, Jens; Goedkoop, Jeroen B.; Nugroho, Agustinus Agung; Braden, Markus; Roy, Sujoy; Sprung, Michael; Schüßler-Langeheine, Christian
    We study the temporal stability of stripe-type spin order in a layered nickelate with x-ray photon correlation spectroscopy and observe fluctuations on timescales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up on both heating and cooling. This behavior appears to be directly connected with spatial correlations: stripes fluctuate slowly when stripe correlation lengths are large and become faster when spatial correlations decrease. A low-temperature decay of nickelate stripe correlations, reminiscent of what occurs in cuprates as a result of a competition between stripes and superconductivity, hence occurs via loss of both spatial and temporal correlations.