Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of BDNF and PEC Nanoparticles on Osteocytes
    (Basel : MDPI, 2020) Loy, Thomas Leonhard; Vehlow, David; Kauschke, Vivien; Müller, Martin; Heiss, Christian; Lips, Katrin Susanne
    Bone substitute materials loaded with mediators that stimulate fracture healing are demanded in the clinical treatment in trauma surgery and orthopedics. Brain-derived neurotrophic factor (BDNF) enhances the proliferation and differentiation of mesenchymal stem cells into osteoblast. To load the implants with BDNF, a drug delivery system that allows the release of BDNF under spatiotemporal control would improve functionality. Polyelectrolyte complex nanoparticles (PECNP) have been reported as a suitable drug delivery system. The suitability of PECNP in contact with osteocytes as the main cell type of bone is not known so far. Thus, we aimed to verify that BDNF and PECNP loaded with BDNF (PECNP+BDNF) as well as pure PECNP have no negative effects on osteocytes in vitro. Therefore, the murine osteocyte cell line MLO-Y4 was treated with BDNF and PECNP+BDNF. The effects on proliferation were analyzed by the BrdU test (n = 5). The results demonstrated a significant increase in proliferation 24 h after BDNF application, whereas PECNP+BDNF did not lead to significant changes. Thus, we conclude that BDNF is an appropriate mediator to stimulate osteocytes. Since the addition of PECNP did not affect the viability of osteocytes, we conclude that PECNP are a suitable drug delivery system for bone implants. © 2020 by the authors.
  • Item
    High concentrations of polyelectrolyte complex nanoparticles decrease activity of osteoclasts
    (Basel : MDPI, 2019) Kauschke, Vivien; Hessland, Felix Maximilian; Vehlow, David; Müller, Martin; Heiss, Christian; Lips, Katrin Susanne
    Fracture treatment in osteoporotic patients is still challenging. Osteoporosis emerges when there is an imbalance between bone formation and resorption in favor of resorption by osteoclasts. Thus, new implantmaterials for osteoporotic fracture treatment should promote bone formation and reduce bone resorption. Nanoparticles can serve as drug delivery systems for growth factors like Brain-Derived Neurotrophic Factor (BDNF), which stimulated osteoblast differentiation. Therefore, polyelectrolyte complex nanoparticles (PEC-NPs) consisting of poly(l-lysine) (PLL) and cellulose sulfate (CS), with or without addition of BDNF, were used to analyze their effect on osteoclasts in vitro. Live cell images showed that osteoclast numbers decreased after application of high PLL/CS PEC-NPs concentrations independent of whether BDNF was added or not. Real-time RT-PCR revealed that relative mRNA expression of cathepsin K and calcitonin receptor significantly declined after incubation of osteoclasts with high concentrations of PLL/CS PEC-NPs. Furthermore, Enzyme-Linked Immunosorbent Assay indicated that tartrate-resistant acidic phosphatase 5b activity was significantly reduced in the presence of high PLL/CS PEC-NPs concentrations. Consistent with these results, the pit formation analysis showed that less hydroxyapatite was resorbed by osteoclasts after incubation with high concentrations of PLL/CS PEC-NPs. BDNF had no influence on osteoclasts. We conclude that highly concentrated PLL/CS PEC-NPs dosages decreased osteoclastogenesis and osteoclasts activity. Moreover, BDNF might be a promising growth factor for osteoporotic fracture treatment since it did not increase osteoclast activity. © 2019 by the authors.