Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Rational modeling of electrochemical double layers in thermodynamic non-equilibrium

2014, Dreyer, Wolfgang, Guhlke, Clemens, Müller, Rüdiger

We consider the contact between an electrolyte and a solid electrode. At first we formulate a thermodynamic consistent model that resolves boundary layers at interfaces. The model includes charge transport, diffusion, chemical reactions, viscosity, elasticity and polarization under isothermal conditions. There is a coupling between these phenomena that particularly involves the local pressure in the electrolyte. Therefore the momentum balance is of major importance for the correct description of the layers. The width of the boundary layers is typically very small compared to the macroscopic dimensions of the system. In a second step we thus apply the method of asymptotic analysis to derive a simpler reduced model that does not resolve the boundary layers but instead incorporates the electrochemical properties of the layers into a set of new boundary conditions. For a metal-electrolyte interface, we derive a qualitative description of the double layer capacitance without the need to resolve space charge layers.

Loading...
Thumbnail Image
Item

New insights on the interfacial tension of electrochemical interfaces and the Lippmann equation

2015, Dreyer, Wolfgang, Guhlke, Clemens, Landstorfer, Manuel, Neumann, Johannes, Müller, Rüdiger

The Lippmann equation is considered as universal relationship between interfacial tension, double layer charge, and cell potential. Based on the framework of continuum thermo-electrodynamics we provide some crucial new insights to this relation. In a previous work we have derived a general thermodynamic consistent model for electrochemical interfaces, which showed a remarkable agreement to single crystal experimental data. Here we apply the model to a curved liquid metal electrode. If the electrode radius is large compared to the Debye length, we apply asymptotic analysis methods and obtain the Lippmann equation. We give precise definitions of the involved quantities and show that the interfacial tension of the Lippmann equation is composed of the surface tension of our general model, and contributions arising from the adjacent space charge layers. This finding is confirmed by a comparison of our model to experimental data of several mercury-electrolyte interfaces. We obtain qualitative and quantitative agreement in the 2V potential range for various salt concentrations. We also discuss the validity of our asymptotic model when the electrode radius is comparable to the Debye length.

Loading...
Thumbnail Image
Item

Overcoming the shortcomings of the Nernst-Planck model

2012, Dreyer, Wolfgang, Guhlke, Clemens, Müller, Rüdiger

This is a study on electrolytes that takes a thermodynamically consistent coupling between mechanics and diffusion into account. It removes some inherent deficiencies of the popular Nernst-Planck model. A boundary problem for equilibrium processes is used to illustrate the new features of our model.

Loading...
Thumbnail Image
Item

Rational modeling of electrochemical double-layers and derivation of Butler-Volmer equations

2013, Dreyer, Wolfgang, Guhlke, Clemens, Müller, Rüdiger

We derive the boundary conditions for the contact between an electrolyte and a solid electrode. At first we revisit the thermodynamic consistent complete model that resolves the actual electrodeelectrolyte interface and its adjacent boundary layers. The width of these layers is controlled by the Debye length that is typically very small, leading to strongly different length scales in the system. We apply the method of asymptotic analysis to derive a simpler reduced model that does not resolve the boundary layers but instead incorporates the electrochemical properties of the layers into a set of new boundary conditions. This approach fully determines the relation of bulk quantities to the boundary conditions of the reduced model. In particular, the Butler-Volmer equations for electrochemical reactions, which are still under discussion in the literature, are rational consequences of our approach. For illustration and to compare with the literature, we consider a simple generic reaction.