Search Results

Now showing 1 - 2 of 2
  • Item
    In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Schladitz, A.; Müller, T.; Kaaden, N.; Massling, A.; Kandler, K.; Ebert, M.; Weinbruch, S.; Deutscher, C.; Wiedensohler, A.
    In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is 1.53–4.1 × 10-3i at 537 nm wavelength and 1.53–3.1 × 10-3i at 637 nm wavelength derived from measurements of scattering and absorption coefficients, as well as the particle size distribution. Whereas the real part of the refractive index is rather constant, the imaginary part varies depending on the mineral dust concentrations. For high dust concentration the single scattering albedo is primarily influenced by iron oxide and is 0.96 ± 0.02 and 0.98 ± 0.01 at 537 nm and 637 nm wavelength, respectively. During low dust concentration the single scattering albedo is more influenced by a soot-type absorber and is 0.89 ± 0.02 and 0.93 ± 0.01 for the same wavelengths.
  • Item
    State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco
    (Milton Park : Taylor & Francis, 2017) Kaaden, N.; Massling, A.; Schladitz, A.; Müller, T.; Kandler, K.; Schütz, L.; Weinzierl, B.; Petzold, A.; Tesche, M.; Leinert, S.; Deutscher, C.; Ebert, M.; Weinbruch, S.; Wiedensohler, A.
    The Saharan Mineral Dust Experiment (SAMUM) was conducted in May and June 2006 in Tinfou, Morocco. A H-TDMA system and a H-DMA-APS system were used to obtain hygroscopic properties of mineral dust particles at 85% RH. Dynamic shape factors of 1.11, 1.19 and 1.25 were determined for the volume equivalent diameters 720, 840 and 960 nm, respectively. During a dust event, the hydrophobic number fraction of 250 and 350 nm particles increased significantly from 30 and 65% to 53 and 75%, respectively, indicating that mineral dust particles can be as small as 200 nm in diameter. Lognormal functions for mineral dust number size distributions were obtained from total particle number size distributions and fractions of hydrophobic particles. The geometric mean diameter for Saharan dust particles was 715 nm during the dust event and 570 nm for the Saharan background aerosol. Measurements of hygroscopic growth showed that the Saharan aerosol consists of an anthropogenic fraction (predominantly non natural sulphate and carbonaceous particles) and of mineral dust particles. Hygroscopic growth and hysteresis curve measurements of the ‘more’ hygroscopic particle fraction indicated ammonium sulphate as a main component of the anthropogenic aerosol. Particles larger than 720 nm in diameter were completely hydrophobic meaning that mineral dust particles are not hygroscopic.