Search Results

Now showing 1 - 10 of 15
  • Item
    Saharan dust contribution to the Caribbean summertime boundary layer - A lidar study during SALTRACE
    (München : European Geopyhsical Union, 2016) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Müller, Thomas; Sauer, Daniel; Toledano, Carlos; Ansmann, Albert
    Dual-wavelength lidar measurements with the small lidar system POLIS of the Ludwig-Maximilians-Universität München were performed during the SALTRACE experiment at Barbados in June and July 2013. Based on high-accuracy measurements of the linear depolarization ratio down to about 200 m above ground level, the dust volume fraction and the dust mass concentration within the convective marine boundary layer can be derived. Additional information from radiosonde launches at the ground-based measurement site provide independent information on the convective marine boundary layer height and the meteorological situation within the convective marine boundary layer. We investigate the lidar-derived optical properties, the lidar ratio and the particle linear depolarization ratio at 355 and 532 nm and find mean values of 0.04 (SD 0.03) and 0.05 (SD 0.04) at 355 and 532 nm, respectively, for the particle linear depolarization ratio, and (26 ± 5) sr for the lidar ratio at 355 and 532 nm. For the concentration of dust in the convective marine boundary layer we find that most values were between 20 and 50 µgm−3. On most days the dust contribution to total aerosol volume was about 30–40 %. Comparing the dust contribution to the column-integrated sun-photometer measurements we see a correlation between high dust contribution, high total aerosol optical depth and a low Angström exponent, and of low dust contribution with low total aerosol optical depth.
  • Item
    Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): Uncertainties in particle sizing and number size distribution
    (München : European Geopyhsical Union, 2016) Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; dos Santos, Sebastiao Martins; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred
    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5–3 µm is needed.
  • Item
    CAMP: An instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
    (Katlenburg-Lindau : Copernicus, 2022) Pilz, Christian; Düsing, Sebastian; Wehner, Birgit; Müller, Thomas; Siebert, Holger; Voigtländer, Jens; Lonardi, Michael
    Airborne observations of vertical aerosol particle distributions are crucial for detailed process studies and model improvements. Tethered balloon systems represent a less expensive alternative to aircraft to probe shallow atmospheric boundary layers (ABLs). This study presents the newly developed cubic aerosol measurement platform (CAMP) for balloon-borne observations of aerosol particle microphysical properties. With an edge length of 35 cm and a weight of 9 kg, the cube is an environmentally robust instrument platform intended for measurements at low temperatures, with a particular focus on applications in cloudy Arctic ABLs. The aerosol instrumentation on board CAMP comprises two condensation particle counters with different lower detection limits, one optical particle size spectrometer, and a miniaturized absorption photometer. Comprehensive calibrations and characterizations of the instruments were performed in laboratory experiments. The first field study with a tethered balloon system took place at the Leibniz Institute for Tropospheric Research (TROPOS) station in Melpitz, Germany, in the winter of 2019. At ambient temperatures between-8 and 15 C, the platform was operated up to a 1.5 km height on 14 flights under both clear-sky and cloudy conditions. The continuous aerosol observations at the ground station served as a reference for evaluating the CAMP measurements. Exemplary profiles are discussed to elucidate the performance of the system and possible process studies. Based on the laboratory instrument characterizations and the observations during the field campaign, CAMP demonstrated the capability to provide comprehensive aerosol particle measurements in cold and cloudy ABLs.
  • Item
    An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC
    (München : European Geopyhsical Union, 2016) Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Müller, Thomas; Conrath, Thomas; Voigtländer, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A.M.; Zahn, Andreas
    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.
  • Item
    Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate
    (Milton Park : Taylor & Francis, 2017) Heese, Birgit; Althausen, Dietrich; Dinter, Tilman; Esselborn, Michael; Müller, Thomas; Tesche, Matthias; Wiegner, Matthias
    Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.
  • Item
    Decreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018
    (Katlenburg-Lindau : EGU, 2020) Sun, Jia; Birmili, Wolfram; Hermann, Markus; Tuch, Thomas; Weinhold, Kay; Merkel, Maik; Rasch, Fabian; Müller, Thomas; Schladitz, Alexander; Bastian, Susanne; Löschau, Gunter; Cyrys, Josef; Gu, Jianwei; Flentje, Harald; Briel, Björn; Asbach, Christoph; Kaminski, Heinz; Ries, Ludwig; Sohmer, Ralf; Gerwig, Holger; Wirtz, Klaus; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ma, Nan; Wiedensohler, Alfred
    Anthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009-2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between-13.1% and-1.7% per year. The slopes of the PNCs vary from-17.2% to-1.7 %,-7.8% to-1.1 %, and-11.1% to-1.2% per year for 10-30, 30-200, and 200-800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies. © 2020 Author(s).
  • Item
    Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
    (Katlenburg-Lindau : EGU, 2019) Toledano, Carlos; Torres, Benjamín; Velasco-Merino, Cristian; Althausen, Dietrich; Groß, Silke; Wiegner, Matthias; Weinzierl, Bernadett; Gasteiger, Josef; Ansmann, Albert; González, Ramiro; Mateos, David; Farrel, David; Müller, Thomas; Haarig, Moritz; Cachorro, Victoria E.
    The Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June-July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study. © 2019 All rights reserved.
  • Item
    Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240a.s.l.)
    (Katlenburg-Lindau : EGU, 2019) Chauvigné, Aurélien; Aliaga, Diego; Sellegri, Karine; Montoux, Nadège; Krejci, Radovan; Močnik, Griša; Moreno, Isabel; Müller, Thomas; Pandolfi, Marco; Velarde, Fernando; Weinhold, Kay; Ginot, Patrick; Wiedensohler, Alfred; Andrade, Marcos; Laj, Paolo
    This study documents and analyses a 4-year continuous record of aerosol optical properties measured at the Global Atmosphere Watch (GAW) station of Chacaltaya (CHC; 5240a.s.l.), in Bolivia. Records of particle light scattering and particle light absorption coefficients are used to investigate how the high Andean Cordillera is affected by both long-range transport and by the fast-growing agglomeration of La Paz-El Alto, located approximately 20km away and 1.5km below the sampling site. The extended multi-year record allows us to study the properties of aerosol particles for different air mass types, during wet and dry seasons, also covering periods when the site was affected by biomass burning in the Bolivian lowlands and the Amazon Basin. The absorption, scattering, and extinction coefficients (median annual values of 0.74, 12.14, and 12.96Mm-1 respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94, and 8.68Mm-1 respectively) and higher values during the dry season (0.80, 11.23, and 14.51Mm-1 respectively). The record is driven by variability at both seasonal and diurnal scales. At a diurnal scale, all records of intensive and extensive aerosol properties show a pronounced variation (daytime maximum, night-time minimum), as a result of the dynamic and convective effects. The particle light absorption, scattering, and extinction coefficients are on average 1.94, 1.49, and 1.55 times higher respectively in the turbulent thermally driven conditions than the more stable conditions, due to more efficient transport from the boundary layer. Retrieved intensive optical properties are significantly different from one season to the other, reflecting the changing aerosol emission sources of aerosol at a larger scale. Using the wavelength dependence of aerosol particle optical properties, we discriminated between contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass burning and urban transport or industries) emissions according to seasons and local circulation. The main sources influencing measurements at CHC are from the urban area of La Paz-El Alto in the Altiplano and from regional biomass burning in the Amazon Basin. Results show a 28% to 80% increase in the extinction coefficients during the biomass burning season with respect to the dry season, which is observed in both tropospheric dynamic conditions. From this analysis, long-term observations at CHC provide the first direct evidence of the impact of biomass burning emissions of the Amazon Basin and urban emissions from the La Paz area on atmospheric optical properties at a remote site all the way to the free troposphere. © Author(s) 2019.
  • Item
    The effect of rapid relative humidity changes on fast filter-based aerosol-particle light-absorption measurements: Uncertainties and correction schemes
    (Katlenburg-Lindau : Copernicus, 2019) Düsing, Sebastian; Wehner, Birgit; Müller, Thomas; Stöcker, Almond; Wiedensohler, Alfred
    Measuring vertical profiles of the particle light-absorption coefficient by using absorption photometers may face the challenge of fast changes in relative humidity (RH). These absorption photometers determine the particle light-absorption coefficient due to a change in light attenuation through a particle-loaded filter. The filter material, however, takes up or releases water with changing relative humidity (RH in %), thus influencing the light attenuation. A sophisticated set of laboratory experiments was therefore conducted to investigate the effect of fast RH changes (dRH/dt) on the particle light-absorption coefficient (σabs in Mm-1) derived with two absorption photometers. The RH dependence was examined based on different filter types and filter loadings with respect to loading material and areal loading density. The Single Channel Tricolor Absorption Photometer (STAP) relies on quartz-fiber filter, and the microAeth® MA200 is based on a polytetrafluoroethylene (PTFE) filter band. Furthermore, three cases were investigated: clean filters, filters loaded with black carbon (BC), and filters loaded with ammonium sulfate. The filter areal loading densities (ρ∗) ranged from 3.1 to 99.6 mg m-2 in the case of the STAP and ammonium sulfate and 1.2 to 37.6 mg m-2 in the case the MA200. Investigating BC-loaded cases, M8 scroll mrow miBCm 15pt was in the range of 2.9 to 43.0 and 1.1 to 16.3 mg m-2 for the STAP and MA200, respectively.

    Both instruments revealed opposing responses to relative humidity changes ("RH) with different magnitudes. The STAP shows a linear dependence on relative humidity changes. The MA200 is characterized by a distinct exponential recovery after its filter was exposed to relative humidity changes. At a wavelength of 624 nm and for the default 60 s running average output, the STAP reveals an absolute change in σabs per absolute change of RH ("σabsĝ•"RH) of 0.14 Mm-1 %-1 in the clean case, 0.29 Mm-1 %-1 in the case of BC-loaded filters, and 0.21 Mm-1 %-1 in the case filters loaded with ammonium sulfate. The 60 s running average of the particle light-absorption coefficient at 625 nm measured with the MA200 revealed a response of around -0.4 Mm-1 %-1 for all three cases. Whereas the response of the STAP varies over the different loading materials, in contrast, the MA200 was quite stable. The response was, for the STAP, in the range of 0.17 to 0.24 Mm-1 %-1 and, in the case of ammonium sulfate loading and in the BC-loaded case, 0.17 to 0.62 Mm-1 %-1. In the ammonium sulfate case, the minimum response shown by the MA200 was -0.42 with a maximum of -0.36 Mm-1 %-1 and a minimum of -0.42 and maximum -0.37 Mm-1 %-1 in the case of BC.

    A linear correction function for the STAP was developed here. It is provided by correlating 1 Hz resolved recalculated particle light-absorption coefficients and RH change rates. The linear response is estimated at 10.08 Mm-1 s-1 %-1. A correction approach for the MA200 is also provided; however, the behavior of the MA200 is more complex. Further research and multi-instrument measurements have to be conducted to fully understand the underlying processes, since the correction approach resulted in different correction parameters across various experiments. However, the exponential recovery after the filter of the MA200 experienced a RH change could be reproduced. However, the given correction approach has to be estimated with other RH sensors as well, since each sensor has a different response time. And, for the given correction approaches, the uncertainties could not be estimated, which was mainly due to the response time of the RH sensor. Therefore, we do not recommend using the given approaches. But they point in the right direction, and despite the imperfections, they are useful for at least estimating the measurement uncertainties due to relative humidity changes.

    Due to our findings, we recommend using an aerosol dryer upstream of absorption photometers to reduce the RH effect significantly. Furthermore, when absorption photometers are used in vertical measurements, the ascending or descending speed through layers of large relative humidity gradients has to be low to minimize the observed RH effect. But this is simply not possible in some scenarios, especially in unmixed layers or clouds. Additionally, recording the RH of the sample stream allows correcting for the bias during post-processing of the data. This data correction leads to reasonable results, according to the given example in this study. © Author(s) 2019.

  • Item
    Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned?
    (Milton Park : Taylor & Francis, 2011) Ansmann, Albert; Petzold, Andreas; Kandler, Konrad; Tegen, Ina; Wendisch, Manfred; Müller, Detlef; Weinzierl, Bernadett; Müller, Thomas; Heintzenberg, Jost
    Two comprehensive field campaigns were conducted in 2006 and 2008 in the framework of the Saharan Mineral Dust Experiment (SAMUM) project. The relationship between chemical composition, shape morphology, size distribution and optical effects of the dust particles was investigated. The impact of Saharan dust on radiative transfer and the feedback of radiative effects upon dust emission and aerosol transport were studied. Field observations (ground-based, airborne and remote sensing) and modelling results were compared within a variety of dust closure experiments with a strong focus on vertical profiling. For the first time, multiwavelength Raman/polarization lidars and an airborne high spectral resolution lidar were involved in major dust field campaigns and provided profiles of the volume extinction coefficient of the particles at ambient conditions (for the full dust size distribution), of particle-shape-sensitive optical properties at several wavelengths, and a clear separation of dust and smoke profiles allowing for an estimation of the single-scattering albedo of the biomass-burning aerosol. SAMUM–1 took place in southern Morocco close to the Saharan desert in the summer of 2006, whereas SAMUM–2 was conducted in Cape Verde in the outflow region of desert dust and biomass-burning smoke from western Africa in the winter of 2008. This paper gives an overview of the SAMUM concept, strategy and goals, provides snapshots (highlights) of SAMUM–2 observations and modelling efforts, summarizes main findings of SAMUM–1 and SAMUM–2 and finally presents a list of remaining problems and unsolved questions.