Search Results

Now showing 1 - 10 of 37
  • Item
    Impact of slippage on the morphology and stability of a dewetting rim
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Münch, Andreas; Wagner, Barbara
    In this study lubrication theory is used to describe the stability and morphology of the rim that forms as a thin polymer film dewets from a hydrophobized silicon wafer. Thin film equations are derived from the governing hydrodynamic equations for the polymer to enable the systematic mathematical and numerical analysis of the properties of the solutions for different regimes of slippage and for a range of time scales. Dewetting rates and the cross sectional profiles of the evolving rims are derived for these models and compared to experimental results. Experiments also show that the rim is typically unstable in the spanwise direction and develops thicker and thinner parts that may grow into ``fingers''. Linear stability analysis as well as nonlinear numerical solutions are presented to investigate shape and growth rate of the rim instability. It is demonstrated that the difference in morphology and the rate at which the instability develops can be directly attributed to the magnitude of slippage. Finally, a derivation is given for the dominant wavelength of the bulges along the unstable rim.
  • Item
    A thin film model for corotational Jeffreys fluids under strong slip
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Münch, Andreas; Wagner, B.; Rauscher, M.; Blossey, R.
    We derive a thin film model for viscoelastic liquids under strong slip which obey the stress tensor dynamics of corotational Jeffreys fluids.
  • Item
    Intermediate-asymptotic structure of a dewetting rim with strong slip
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Evans, Peter L.; King, John R.; Münch, Andreas
    When a thin viscous liquid film dewets, it typically forms a rim which spreads outwards, leaving behind a growing dry region. We consider the dewetting behaviour of a film, when there is strong slip at a liquid-substrate interface. The film can be modelled by two coupled partial differential equations (PDEs) describing the film thickness and velocity. Using asymptotic methods, we describe the structure of the rim as it evolves in time, and the rate of dewetting, in the limit of large slip lengths. An inner region emerges, closest to the dewetted region, where surface tension is important; in an outer region, three subregions develop. This asymptotic description is compared with numerical solutions of the full system of PDEs.
  • Item
    Thin film rupture for large slip
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Peschka, Dirk; Münch, Andreas; Niethammer, Barbara
    This paper studies the rupture of thin liquid films on hydrophobic substrates, assuming large slip at the liquidsolid interface. Using a recently developed em strong slip lubrication model, it is shown that the rupture passes through up to three self-similar regimes with different dominant balances and different scaling exponents. For one of these regimes the similarity is of second kind, and the similarity exponent is determined by solving a boundary value problem for a nonlinear ODE. For this regime we also prove finite-time rupture.
  • Item
    Influence of slip on the Rayleigh-Plateau rim instability in dewetting viscous films
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Bäumchen, Oliver; Marquant, Ludovic; Blossey, Ralf; Münch, Andreas; Wagner, Barbara; Jacobs, Karin
    A dewetting viscous film develops a characteristic fluid rim at its receding edge due to mass conservation. In the course of the dewetting process the rim becomes unstable via an instability of Rayleigh-Plateau type. An important difference exists between this classic instability of a liquid column and the rim instability in the thin film as the growth of the rim is continuously fueled by the receding film. We explain how the development and macroscopic morphology of the rim instability are controlled by the slip of the film on the substrate. A single thin-film model captures quantitatively the characteristics of the evolution of the rim observed in our experiments.
  • Item
    Self-consistent field theory for a polymer brush. Part II: The effective chemical potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Münch, Andreas; Wagner, Barbara
    The most successful mean-field model to describe the collective behaviour of the large class of macromolecular polymers is the self-consistent field theory (SCFT). Still, even for the simple system of a grafted dry polymer brush, the mean-field equations have to be solved numerically. As one of very few alternatives that offer some analytical tractability the strong-stretching theory (SST) has led to explicit expressions for the effective chemical potential and consequently the free energy to promote an understanding of the underlying physics. Yet, a direct derivation of these analytical results from the SCFT model is still outstanding. In this study we present a systematic asymptotic theory based on matched asymtptotic expansions to obtain the effective chemical potential from the SCFT model for a dry polymer brush for large but finite stretching.
  • Item
    Gradient structures for flows of concentrated suspensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Peschka, Dirk; Thomas, Marita; Ahnert, Tobias; Münch, Andreas; Wagner, Barbara
    In this work we investigate a two-phase model for concentrated suspensions. We construct a PDE formulation using a gradient flow structure featuring dissipative coupling between fluid and solid phase as well as different driving forces. Our construction is based on the concept of flow maps that also allows it to account for flows in moving domains with free boundaries. The major difference compared to similar existing approaches is the incorporation of a non-smooth twohomogeneous term to the dissipation potential, which creates a normal pressure even for pure shear flows.
  • Item
    Spinodal dewetting of thin films with large interfacial slip : implications from the dispersion relation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Rauscher, Markus; Blossey, Ralf; Münch, Andreas; Wagner, Barbara
    We compare the dispersion relations for spinodally dewetting thin liquid films for increasing magnitude of interfacial slip length in the lubrication limit. While the shape of the dispersion relation, in particular the position of the maximum, are equal for no-slip up to moderate slip lengths, the position of the maximum shifts to much larger wavelengths for large slip lengths. Here, we discuss the implications of this fact for recently developed methods to assess the disjoining pressure in spinodally unstable thin films by measuring the shape of the roughness power spectrum. For PS films on OTS covered Si wafers (with slip length $bapprox 1,mu$m) we predict a 20% shift of the position of the maximum of the power spectrum which should be detectable in experiments.
  • Item
    Interface morphologies in liquid/liquid dewetting
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Kostourou, Konstantina; Peschka, Dirk; Münch, Andreas; Wagner, Barbara; Herminghaus, Stephan; Seemann, Ralf
    The dynamics and morphology of a liquid polystyrene (PS) film on the scale of a hundred nanometer dewetting from a liquid polymethylmethacrylate (PMMA) film is investigated experimentally and theoretically. The polymers considered here are both below their entanglement lengths and have negligible elastic properties. A theoretical model based on viscous Newtonian flow for both polymers is set up from which a system of coupled lubrication equations is derived and solved numerically. A direct comparison of the numerical solution with the experimental findings for the characteristic signatures of the cross-sections of liquid/air and liquid/liquid phase boundaries of the dewetting rims as well as the dewetting rates is performed and discussed for various viscosity ratios of the PS and PMMA layers.
  • Item
    Models for the two-phase flow of concentrated suspensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Ahnert, Tobias; Münch, Andreas; Wagner, Barbara
    A new two-phase model for concentrated suspensions is derived that incorporates a constitutive law combining the rheology for non-Brownian suspension and granular flow. The resulting model naturally exhibits a Bingham-type flow property. This property is investigated in detail for the simple geometry of plane Poiseuille flow, where an unyielded or jammed zone of finite width arises in the center of the channel. For the steady state of this problem, the governing equation are reduced to a boundary value problem for a system of ordinary differential equations and the dependence of its solutions are analyzed by using phase-space methods. For the general time-dependent case a new drift-flux model is derived for the first time using matched asymptotic expansions that take account of the boundary layers at the walls and the interface between the yielded and unyielded region. Using the drift-flux model, the behavior of the suspension flow, in particular the appearance and evolution of unyielded or jammed regions is then studied numerically for different choices of the parameters.