Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat)

2020, Madeddu, Silvia, Ueckerdt, Falko, Pehl, Michaja, Peterseim, Juergen, Lord, Michael, Kumar, Karthik Ajith, Krüger, Christoph, Luderer, Gunnar

The decarbonisation of industry is a bottleneck for the EU's 2050 target of climate neutrality. Replacing fossil fuels with low-carbon electricity is at the core of this challenge; however, the aggregate electrification potential and resulting system-wide CO2 reductions for diverse industrial processes are unknown. Here, we present the results from a comprehensive bottom-up analysis of the energy use in 11 industrial sectors (accounting for 92% of Europe's industry CO2 emissions), and estimate the technological potential for industry electrification in three stages. Seventy-eight per cent of the energy demand is electrifiable with technologies that are already established, while 99% electrification can be achieved with the addition of technologies currently under development. Such a deep electrification reduces CO2 emissions already based on the carbon intensity of today's electricity (∼300 gCO2 kWhel−1). With an increasing decarbonisation of the power sector IEA: 12 gCO2 kWhel−1 in 2050), electrification could cut CO2 emissions by 78%, and almost entirely abate the energy-related CO2 emissions, reducing the industry bottleneck to only residual process emissions. Despite its decarbonisation potential, the extent to which direct electrification will be deployed in industry remains uncertain and depends on the relative cost of electric technologies compared to other low-carbon options.

Loading...
Thumbnail Image
Item

REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits

2021, Baumstark, Lavinia, Bauer, Nico, Benke, Falk, Bertram, Christoph, Bi, Stephen, Gong, Chen Chris, Dietrich, Jan Philipp, Dirnaichner, Alois, Giannousakis, Anastasis, Hilaire, Jerome, Klein, David, Koch, Johannes, Leimbach, Marian, Levesque, Antoine, Madeddu, Silvia, Malik, Aman, Merfort, Anne, Merfort, Leon, Odenweller, Adrian, Pehl, Michaja, Pietzcker, Robert C., Piontek, Franziska, Rauner, Sebastian, Rodrigues, Renato, Rottoli, Marianna, Schreyer, Felix, Schultes, Anselm, Soergel, Bjoern, Soergel, Dominika, Strefler, Jessica, Ueckerdt, Falko, Kriegler, Elmar, Luderer, Gunnar

This paper presents the new and now open-source version 2.1 of the REgional Model of INvestments and Development (REMIND). REMIND, as an integrated assessment model (IAM), provides an integrated view of the global energy–economy–emissions system and explores self-consistent transformation pathways. It describes a broad range of possible futures and their relation to technical and socio-economic developments as well as policy choices. REMIND is a multiregional model incorporating the economy and a detailed representation of the energy sector implemented in the General Algebraic Modeling System (GAMS). It uses non-linear optimization to derive welfare-optimal regional transformation pathways of the energy-economic system subject to climate and sustainability constraints for the time horizon from 2005 to 2100. The resulting solution corresponds to the decentralized market outcome under the assumptions of perfect foresight of agents and internalization of external effects. REMIND enables the analyses of technology options and policy approaches for climate change mitigation with particular strength in representing the scale-up of new technologies, including renewables and their integration in power markets. The REMIND code is organized into modules that gather code relevant for specific topics. Interaction between different modules is made explicit via clearly defined sets of input and output variables. Each module can be represented by different realizations, enabling flexible configuration and extension. The spatial resolution of REMIND is flexible and depends on the resolution of the input data. Thus, the framework can be used for a variety of applications in a customized form, balancing requirements for detail and overall runtime and complexity.