Search Results

Now showing 1 - 4 of 4
  • Item
    Ultrafast laser inscription of asymmetric integrated waveguide 3 dB couplers for astronomical K-band interferometry at the CHARA array
    (Washington, DC : Soc., 2021) Benoît, Aurélien; Pike, Fraser A.; Sharma, Tarun K.; MacLachlan, David G.; Dinkelaker, Aline N.; Nayak, Abani S.; Madhav, Kalaga; Roth, Martin M.; Labadie, Lucas; Pedretti, Ettore; Brummelaar, Theo A. ten; Scott, Nic; Coudé du Foresto, Vincent; Thomson, Robert R.
    We present the fabrication and characterization of 3 dB asymmetric directional couplers for the astronomical K-band at wavelengths between 2.0 and 2.4 µm. The couplers were fabricated in commercial Infrasil silica glass using an ultrafast laser operating at 1030 nm. After optimizing the fabrication parameters, the insertion losses of straight single-mode waveguides were measured to be ∼1.2±0.5dB across the full K-band. We investigate the development of asymmetric 3 dB directional couplers by varying the coupler interaction lengths and by varying the width of one of the waveguide cores to detune the propagation constants of the coupled modes. In this manner, we demonstrate that ultrafast laser inscription is capable of fabricating asymmetric 3 dB directional couplers for future applications in K-band stellar interferometry. Finally, we demonstrate that our couplers exhibit an interferometric fringe contrast of >90%. This technology paves the path for the development of a two-telescope K-band integrated optic beam combiner for interferometry to replace the existing beam combiner (MONA) in Jouvence of the Fiber Linked Unit for Recombination (JouFLU) at the Center for High Angular Resolution Astronomy (CHARA) telescope array.
  • Item
    Photonic lanterns: a practical guide to filament tapering
    (Washington, DC : OSA, 2021) Davenport, John J.; Diab, Momen; Deka, Pranab J.; Tripathi, Aashana; Madhav, Kalaga; Roth, Martin M.
    We present a detailed method of tapering and drawing photonic lanterns using a filament glass processing system. Single-mode fibers (SMFs) were stacked inside a low refractive index, fluorine-doped capillary, which was then heated and tapered to produce a transition from single-mode to multi-mode. Fabrication parameters were considered in four categories: method of preparation and stacking of SMFs into a capillary, heat and filament dimensions of the glass processor, capillary ID, and the use of vacuum during tapering. 19- and 37- fiber lanterns were drawn, demonstrating good fusion between SMF claddings, a clear differentiation between core and cladding in the multimode (MM) section, and well-ordered arrangements between SMFs, which is controlled during the tapering process. The transmission efficiency of a 19-fiber photonic lantern, compared to an MMF with the same core diameter and NA, has a relative transmission efficiency of 1.19 dB or 67.1%. The steps and parameters provided in this paper form a framework for fabricating quality photonic lanterns.
  • Item
    Performance limits of astronomical arrayed waveguide gratings on a silica platform
    (Washington, DC : Soc., 2020) Stoll, Andreas; Madhav, Kalaga; Roth, Martin
    We present a numerical and experimental study of the impact of phase errors on the performance of large, high-resolution arrayed waveguide gratings (AWG) for applications in astronomy. We use a scalar diffraction model to study the transmission spectrum of an AWG under random variations of the optical waveguide lengths. We simulate phase error correction by numerically trimming the lengths of the optical waveguides to the nearest integer multiple of the central wavelength. The optical length error distribution of a custom-fabricated silica AWG is measured using frequency-domain interferometry and Monte-Carlo fitting of interferogram intensities. In the end, we give an estimate for the phase-error limited size of a waveguide array manufactured using state-of-the-art technology. We show that post-processing eliminates phase errors as a performance limiting factor for astronomical spectroscopy in the H-band.
  • Item
    Fiber Vector Bend Sensor Based on Multimode Interference and Image Tapping
    (Basel : MDPI, 2019) Zhang, Ziyang; Rahman, Aashia; Fiebrandt, Julia; Wang, Yu; Sun, Kai; Luo, Jiajun; Madhav, Kalaga; Roth, Martin M.
    A grating-less fiber vector bend sensor is demonstrated using a standard single mode fiber spliced to a multimode fiber as a multimode interference device. The ring-shaped light intensity distribution at the end of the multimode fiber is subject to a vector transition in response to the fiber bend. Instead of comprehensive imaging processing for the analysis, the image can be tapped out by a seven-core fiber spliced to the other end of the multimode fiber. The seven-core fiber is further guided to seven single mode fibers via a commercial fan-out device. By comparing the relative light intensities received at the seven outputs, both the bend radius and its direction can be determined. Experiment has shown that a slight bend displacement of 10 µm over a 1.2-cm-long multimode fiber in the X direction (bend angle of 0.382 ◦ ) causes a distinctive power imbalance of 4.6 dB between two chosen outputs (numbered C4 and C7). For the same displacement in the Y direction, the power ratio between the previous two outputs C4 and C7 remains constant, while the imbalance between another pair (C3 and C4) rises significantly to 7.0 dB. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.