Search Results

Now showing 1 - 3 of 3
  • Item
    Sperm-Hybrid Micromotor for Targeted Drug Delivery
    (Washington, DC : Soc., 2017-12-13) Xu, Haifeng; Medina-Sánchez, Mariana; Magdanz, Veronika; Schwarz, Lukas; Hebenstreit, Franziska; Schmidt, Oliver G.
    A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm–cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.
  • Item
    IRONSperm: Sperm-templated soft magnetic microrobots
    (Washington, DC : American Association for the Advancement of Science, 2020) Magdanz, Veronika; Khalil, Islam S.M.; Simmchen, Juliane; Furtado, Guilherme P.; Mohanty, Sumit; Gebauer, Johannes; Xu, Haifeng; Klingner, Anke; Aziz, Azaam; Medina-Sánchez, Mariana; Schmidt, Oliver G.; Misra, Sarthak
    We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.
  • Item
    Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media
    (Weinheim : Wiley-VCH, 2020) Striggow, Friedrich; Medina-Sánchez, Mariana; Auernhammer, Günter K.; Magdanz, Veronika; Friedrich, Benjamin M.; Schmidt, Oliver G.
    Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on–off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim