Search Results

Now showing 1 - 7 of 7
  • Item
    The Gaia-ESO Survey: Probing the lithium abundances in old metal-rich dwarf stars in the solar vicinity
    (Les Ulis : EDP Sciences, 2022) Dantas, M.L.L.; Guiglion, G.; Smiljanic, R.; Romano, D.; Magrini, L.; Bensby, T.; Chiappini, C.; Franciosini, E.; Nepal, S.; Tautvaišienė, G.; Gilmore, G.; Randich, S.; Lanzafame, A.C.; Heiter, U.; Morbidelli, L.; Prisinzano, L.; Zaggia, S.
    Context. Lithium (Li) is a fragile element that is produced in a variety of sites but can also be very easily depleted in stellar photospheres. Radial migration has been reported to explain the decrease in the upper envelope of Li measurements observed for relatively old metal-rich dwarf stars in some surveys. Aims. We test a scenario in which radial migration could affect the Li abundance pattern of dwarf stars in the solar neighbourhood. This may confirm that the Li abundances in these stars cannot serve as a probe for the Li abundance in the interstellar medium (ISM). In other words, to probe the evolution of the Li abundance in the local ISM, it is crucial that stellar intruders be identified and removed from the adopted sample. Methods. We used the high-quality data (including Li abundances) from the sixth internal Data Release of the Gaia-ESO survey. In this sample we grouped stars by similarity in chemical abundances via hierarchical clustering. Our analysis treats both measured Li abundances and upper limits. Results. The Li envelope of the previously identified radially migrated stars is well below the benchmark meteoritic value (<3.26 dex); the star with the highest detected abundance has A(Li) = 2.76 dex. This confirms the previous trends observed for old dwarf stars (median ages ~ 8 Gyr), where Li decreases for [Fe/H] ≳ 0. Conclusions. This result is supporting evidence that the abundance of Li measured in the upper envelope of old dwarf stars should not be considered a proxy for the ISM Li. Our scenario also indicates that the stellar yields for [M/H] >0 should not be decreased, as recently proposed in the literature. Our study backs recent studies that claim that old dwarfs on the hot side of the dip are efficient probes of the ISM abundance of Li, provided atomic diffusion does not significantly lower the initial Li abundance in the atmospheres of metal-rich objects.
  • Item
    The GAPS Programme at TNG: XXXV. Fundamental properties of transiting exoplanet host stars
    (Les Ulis : EDP Sciences, 2022) Biazzo, K.; D’Orazi, V.; Desidera, S.; Turrini, D.; Benatti, S.; Gratton, R.; Magrini, L.; Sozzetti, A.; Baratella, M.; Bonomo, A.S.; Borsa, F.; Claudi, R.; Covino, E.; Damasso, M.; Di Mauro, M.P.; Lanza, A.F.; Maggio, A.; Malavolta, L.; Maldonado, J.; Marzari, F.; Micela, G.; Poretti, E.; Vitello, F.; Affer, L.; Bignamini, A.; Carleo, I.; Cosentino, R.; Fiorenzano, A.F.M.; Giacobbe, P.; Harutyunyan, A.; Leto, G.; Mancini, L.; Molinari, E.; Molinaro, M.; Nardiello, D.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Rainer, M.; Scandariato, G.
    Context. Exoplanetary properties strongly depend on stellar properties: to know the planet with accuracy and precision it is necessary to know the star as accurately and precisely as possible. Aims. Our immediate aim is to characterize in a homogeneous and accurate way a sample of 27 transiting planet-hosting stars observed within the Global Architecture of Planetary System program. For the wide visual binary XO-2, we considered both components (N: hosting a transiting planet; S: without a known transiting planet). Our final goal is to widely analyze the sample by deriving several stellar properties, abundances of many elements, kinematic parameters, and discuss them in the context of planetary formation. Methods. We determined the stellar parameters (effective temperature, surface gravity, rotational velocity) and abundances of 26 elements (Li, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). Our study is based on high-resolution HARPS-N at TNG and FEROS at ESO spectra and uniform techniques. Depending on stellar parameters and chemical elements, we used line equivalent widths or spectral synthesis methods. We derived kinematic properties taking advantage of Gaia data and for the first time in exoplanet host stars we estimated ages using elemental ratios as chemical clocks. Results. The effective temperature of our stars is ∼4400-6700 K, while the iron abundance [Fe/H] is within -0.3 and 0.4 dex. Lithium is present in seven stars. The [X/H] and [X/Fe] abundances versus [Fe/H] are consistent with the Galactic chemical evolution. The dependence of [X/Fe] with the condensation temperature is critically analyzed with respect to stellar and kinematic properties. All targets with measured C and O abundances show C/O < 0.8, compatible with Si present in rock-forming minerals. Mean C/O and [C/O] values are slightly lower than for the Sun. Most of targets show 1.0 < Mg/Si < 1.5, compatible with Mg distributed between olivine and pyroxene, and mean Mg/Si lower than for the Sun. HAT-P-26, the target hosting the lowest-mass planet, shows the highest Mg/Si ratio. From our chemodynamical analysis we find agreement between ages and position within the Galactic disk. Finally, we note a tendency for higher-density planets to be around metal-rich stars and hints of higher stellar abundances of some volatiles (e.g., O) for lower-mass planets. We cannot exclude that part of our results could be also related to the location of the stars within the Galactic disk. Conclusions. We try to trace the planetary migration scenario from the composition of the planets related to the chemical composition of the hosting stars. This kind of study will be useful for upcoming space mission data to get more insights into the formation-migration mechanisms.
  • Item
    The Gaia -ESO Survey: Lithium measurements and new curves of growth
    (Les Ulis : EDP Sciences, 2022) Franciosini, E.; Randich, S.; de Laverny, P.; Biazzo, K.; Feuillet, D.K.; Frasca, A.; Lind, K.; Prisinzano, L.; Tautvaišiene, G.; Lanzafame, A.C.; Smiljanic, R.; Gonneau, A.; Magrini, L.; Pancino, E.; Guiglion, G.; Sacco, G.G.; Sanna, N.; Gilmore, G.; Bonifacio, P.; Jeffries, R.D.; Micela, G.; Prusti, T.; Alfaro, E.J.; Bensby, T.; Bragaglia, A.; François, P.; Korn, A.J.; Van Eck, S.; Bayo, A.; Bergemann, M.; Carraro, G.; Heiter, U.; Hourihane, A.; Jofré, P.; Lewis, J.; Martayan, C.; Monaco, L.; Morbidelli, L.; Worley, C.C.; Zaggia, S.
    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey that was carried out using the multi-object FLAMES spectrograph at the Very Large Telescope. The survey provides accurate radial velocities, stellar parameters, and elemental abundances for ~115 000 stars in all Milky Way components. Aims. In this paper, we describe the method adopted in the final data release to derive lithium equivalent widths (EWs) and abundances. Methods. Lithium EWs were measured using two different approaches for FGK and M-type stars, to account for the intrinsic differences in the spectra. For FGK stars, we fitted the lithium line using Gaussian components, while direct integration over a predefined interval was adopted for M-type stars. Care was taken to ensure continuity between the two regimes. Abundances were derived using a new set of homogeneous curves of growth that were derived specifically for GES, and which were measured on a synthetic spectral grid consistently with the way the EWs were measured. The derived abundances were validated by comparison with those measured by other analysis groups using different methods. Results. Lithium EWs were measured for ~40 000 stars, and abundances could be derived for ~38 000 of them. The vast majority of the measures (80%) have been obtained for stars in open cluster fields. The remaining objects are stars in globular clusters, or field stars in the Milky Way disc, bulge, and halo. Conclusions. The GES dataset of homogeneous lithium abundances described here will be valuable for our understanding of several processes, from stellar evolution and internal mixing in stars at different evolutionary stages to Galactic evolution.
  • Item
    The Gaia-ESO survey: Mapping the shape and evolution of the radial abundance gradients with open clusters
    (Les Ulis : EDP Sciences, 2023) Magrini, L.; Viscasillas Vázquez, C.; Spina, L.; Randich, S.; Romano, D.; Franciosini, E.; Recio-Blanco, A.; Nordlander, T.; D'orazi, V.; Baratella, M.; Smiljanic, R.; Dantas, M.L.L.; Pasquini, L.; Spitoni, E.; Casali, G.; Van Der Swaelmen, M.; Bensby, T.; Stonkute, E.; Feltzing, S.; Sacco, G.G.; Bragaglia, A.; Pancino, E.; Heiter, U.; Biazzo, K.; Gilmore, G.; Bergemann, M.; Tautvaišienė, G.; Worley, C.; Hourihane, A.; Gonneau, A.; Morbidelli, L.
    Context. The spatial distribution of elemental abundances and their time evolution are among the major constraints to disentangling the scenarios of formation and evolution of the Galaxy. Aims. In this paper we used the sample of open clusters available in the final release of the Gaia-ESO survey to trace the Galactic radial abundance and abundance-to-iron ratio gradients, and their time evolution. Methods. We selected member stars in 62 open clusters, with ages from 0.1 to about 7 Gyr, located in the Galactic thin disc at galactocentric radii (RGC) from about 6 to 21 kpc. We analysed the shape of the resulting [Fe/H] gradient, the average gradients [El/H] and [El/Fe] combining elements belonging to four different nucleosynthesis channels, and their individual abundance and abundance ratio gradients. We also investigated the time evolution of the gradients dividing open clusters in three age bins. Results. The [Fe/H] gradient has a slope of −0.054 dex kpc−1. It can be better approximated with a two-slope shape, steeper for RGC ≤ 11.2 kpc and flatter in the outer regions. We saw different behaviours for elements belonging to different channels. For the time evolution of the gradient, we found that the youngest clusters (age < 1 Gyr) in the inner disc have lower metallicity than their older counterparts and that they outline a flatter gradient. We considered some possible explanations, including the effects of gas inflow and migration. We suggest that the most likely one may be related to a bias introduced by the standard spectroscopic analysis producing lower metallicities in the analysis of low-gravity stars. Conclusions. To delineate the shape of the ‘true’ gradient, we should most likely limit our analysis to stars with low surface gravity log g >  2.5 and microturbulent parameter ξ <  1.8 km s−1. Based on this reduced sample, we can conclude that the gradient has minimally evolved over the time-frame outlined by the open clusters, indicating a slow and stationary formation of the thin disc over the last 3 Gyr. We found a secondary role of cluster migration in shaping the gradient, with a more prominent role of migration for the oldest clusters.
  • Item
    MINCE: I. Presentation of the project and of the first year sample
    (Les Ulis : EDP Sciences, 2022) Cescutti, G.; Bonifacio, P.; Caffau, E.; Monaco, L.; Franchini, M.; Lombardo, L.; Matas Pinto, A. M.; Lucertini, F.; François, P.; Spitoni, E.; Lallement, R.; Sbordone, L.; Mucciarelli, A.; Spite, M.; Hansen, C.J.; Di Marcantonio, P.; Kučinskas, A.; Dobrovolskas, V.; Korn, A.J.; Valentini, M.; Magrini, L.; Cristallo, S.; Matteucci, F.
    Context. In recent years, Galactic archaeology has become a particularly vibrant field of astronomy, with its main focus set on the oldest stars of our Galaxy. In most cases, these stars have been identified as the most metal-poor. However, the struggle to find these ancient fossils has produced an important bias in the observations - in particular, the intermediate metal-poor stars (-2.5 < [Fe/H] <-1.5) have been frequently overlooked. The missing information has consequences for the precise study of the chemical enrichment of our Galaxy, in particular for what concerns neutron capture elements and it will be only partially covered by future multi object spectroscopic surveys such as WEAVE and 4MOST. Aims. Measuring at Intermediate Metallicity Neutron Capture Elements (MINCE) is gathering the first high-quality spectra (high signal-to-noise ratio, S/N, and high resolution) for several hundreds of bright and metal-poor stars, mainly located in our Galactic halo. Methods. We compiled our selection mainly on the basis of Gaia data and determined the stellar atmospheres of our sample and the chemical abundances of each star. Results. In this paper, we present the first sample of 59 spectra of 46 stars. We measured the radial velocities and computed the Galactic orbits for all stars. We found that 8 stars belong to the thin disc, 15 to disrupted satellites, and the remaining cannot be associated to the mentioned structures, and we call them halo stars. For 33 of these stars, we provide abundances for the elements up to zinc. We also show the chemical evolution results for eleven chemical elements, based on recent models. Conclusions. Our observational strategy of using multiple telescopes and spectrographs to acquire high S/N and high-resolution spectra for intermediate-metallicity stars has proven to be very efficient, since the present sample was acquired over only about one year of observations. Finally, our target selection strategy, after an initial adjustment, proved satisfactory for our purposes.
  • Item
    Stellar Population Astrophysics (SPA) with the TNG: α-elements, lithium, sodium and aluminum in 16 open clusters
    (Les Ulis : EDP Sciences, 2022) Zhang, R.; Lucatello, S.; Bragaglia, A.; Alonso-Santiago, J.; Andreuzzi, G.; Casali, G.; Carrera, R.; Carretta, E.; D’Orazi, V.; Frasca, A.; Fu, X.; Magrini, L.; Minchev, I.; Origlia, L.; Spina, L.; Vallenari, A.
    Context. Exploring the Galactic chemical evolution and enrichment scenarios with open clusters (OCs) allows us to understand the history of the Milky Way disk. High-resolution spectra of OCs are a crucial tool, as they provide precise chemical information, to combine with precise distances and ages. Aims. The aim of the Stellar Population Astrophysics (SPA) project is to derive homogeneous and accurate comprehensive chemical characterization of a number of poorly studied OCs. Methods. Using the HARPS-N echelle spectrograph at the Telescopio Nazionale Galileo (TNG), we obtained high-resolution spectra of giant stars in 18 OCs, 16 of which are chemically characterized for the first time, and two of which are well studied for comparison. The OCs in this sample have ages from a few tens of Myr to 4 Gyr, with a prevalence of young clusters. We already presented the radial velocities and atmospheric parameters for them in a previous SPA paper. Here, we present results for the α-elements O, Mg, Si, Ca and Ti, and the light elements Na and Al, all determined by the equivalent width method. We also measured Li abundance through the synthesis method. Results. We discuss the behaviors of lithium, sodium and aluminum in the context of stellar evolution. For Na and Al, we compare our findings with models to investigate their behaviors as a function of mass, suggesting that Na mixing to the surface might start in masses as low as 2 M·. We study the radial, vertical, and age trends for the measured abundance ratios in a sample that combines our results and recent literature for OCs, finding significant (positive) gradients only for [Mg/Fe] and [Ca/Fe] in all cases. Finally, we compare O and Mg in the combined sample with chemo-dynamical models, finding a good agreement for intermediate-Age and old clusters. There is a sharp increase in the abundance ratios measured among very young clusters (age < 300 Myr), accompanied by a poorer fit with the models for O and Mg, likely related to the inadequacy of traditional model atmospheres and methods in the derivation of atmospheric parameters and abundance ratios for stars of such young ages.
  • Item
    The Gaia-ESO Survey: Old super-metal-rich visitors from the inner Galaxy
    (Les Ulis : EDP Sciences, 2023) Dantas, M.L.L.; Smiljanic, R.; Boesso, R.; Rocha-Pinto, H.J.; Magrini, L.; Guiglion, G.; Tautvaišiene, G.; Gilmore, G.; Randich, S.; Bensby, T.; Bragaglia, A.; Bergemann, M.; Carraro, G.; Jofré, P.; Zaggia, S.
    Context. The solar vicinity is currently populated by a mix of stars with various chemo-dynamic properties, including stars with a high metallicity compared to the Sun. Dynamical processes such as churning and blurring are expected to relocate such metal-rich stars from the inner Galaxy to the solar region. Aims. We report the identification of a set of old super-metal-rich (+0.15 ≤ [Fe/H] ≤ +0.50) dwarf stars with low eccentricity orbits (e ≤ 0.2) that reach a maximum height from the Galactic plane in the range ≤0.5-1.5 kpc. We discuss their chemo-dynamic properties with the goal of understanding their potential origins. Methods. We used data from the internal Data Release 6 of the Gaia-ESO Survey. We selected stars observed at high resolution with abundances of 21 species of 18 individual elements (i.e. 21 dimensions). We applied a hierarchical clustering algorithm to group the stars with similar chemical abundances within the complete chemical abundance space. Orbits were integrated using astrometric data from Gaia and radial velocities from Gaia-ESO. Stellar ages were estimated using isochrones and a Bayesian method. Results. This set of super-metal-rich stars can be arranged into five subgroups, according to their chemical properties. Four of these groups seem to follow a chemical enrichment flow, where nearly all abundances increase in lockstep with Fe. The fifth subgroup shows different chemical characteristics. All the subgroups have the following features: median ages of the order of 7-9 Gyr (with five outlier stars of estimated younger age), solar or subsolar [Mg/Fe] ratios, maximum height from the Galactic plane in the range 0.5-1.5 kpc, low eccentricities (e ≤ 0.2), and a detachment from the expected metallicity gradient with guiding radius (which varies between ~6 and 9 kpc for the majority of the stars). Conclusions. The high metallicity of our stars is incompatible with a formation in the solar neighbourhood. Their dynamic properties agree with theoretical expectations that these stars travelled from the inner Galaxy due to blurring and, more importantly, to churning. We therefore suggest that most of the stars in this population originated in the inner regions of the Milky Way (inner disc and/or the bulge) and later migrated to the solar neighbourhood. The region where the stars originated had a complex chemical enrichment history, with contributions from supernovae types Ia and II, and possibly asymptotic giant branch stars as well.