Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Coherent interaction of atoms with a beam of light confined in a light cage

2021, Davidson-Marquis, Flavie, Gargiulo, Julian, Gómez-López, Esteban, Jang, Bumjoon, Kroh, Tim, Müller, Chris, Ziegler, Mario, Maier, Stefan A., Kübler, Harald, Schmidt, Markus A., Benson, Oliver

Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.

Loading...
Thumbnail Image
Item

Fiber-integrated hollow-core light cage for gas spectroscopy

2021, Jang, Bumjoon, Gargiulo, Julian, Kim, Jisoo, Bürger, Johannes, Both, Steffen, Lehmann, Hartmut, Wieduwilt, Torsten, Weiss, Thomas, Maier, Stefan A., Schmidt, Markus A.

Interfacing integrated on-chip waveguides with spectroscopic approaches represents one research direction within current photonics aiming at reducing geometric footprints and increasing device densities. Particularly relevant is to connect chip-integrated waveguides with established fiber-based circuitry, opening up the possibility for a new class of devices within the field of integrated photonics. Here, one attractive waveguide is the on-chip light cage, confining and guiding light in a low-index core through the anti-resonance effect. This waveguide, implemented via 3D nanoprinting and reaching nearly 100% overlap of mode and material of interest, uniquely provides side-wise access to the core region through the open spaces between the cage strands, drastically reducing gas diffusion times. Here, we extend the capabilities of the light cage concept by interfacing light cages and optical fibers, reaching a fully fiber-integrated on-chip waveguide arrangement with its spectroscopic capabilities demonstrated here on the example of tunable diode laser absorption spectroscopy of ammonia. Controlling and optimizing the fiber circuitry integration have been achieved via automatic alignment in etched v-grooves on silicon chips. This successful device integration via 3D nanoprinting highlights the fiber-interfaced light cage to be an attractive waveguide platform for a multitude of spectroscopy-related fields, including bio-analytics, lab-on-chip photonic sensing, chemistry, and quantum metrology. © 2021 Author(s).

Loading...
Thumbnail Image
Item

3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy

2023, Kim, Jisoo, Bürger, Johannes, Jang, Bumjoon, Zeisberger, Matthias, Gargiulo, Julian, Menezes, Leonardo de S., Maier, Stefan A., Schmidt, Markus A.

Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.

Loading...
Thumbnail Image
Item

On-chip fluorescence detection using photonic bandgap guiding optofluidic hollow-core light cage

2022, Kim, Jisoo, Jang, Bumjoon, Wieduwilt, Torsten, Warren-Smith, Stephen C., Bürger, Johannes, Maier, Stefan A., Schmidt, Markus A.

The on-chip detection of fluorescent light is essential for many bioanalytical and life-science related applications. Here, the optofluidic light cage consisting of a sparse array of micrometer encircling a hollow core represents an innovative concept, particularly for on-chip waveguide-based spectroscopy. In the present work, we demonstrate the potential of the optofluidic light cage concept in the context of integrated on-chip fluorescence spectroscopy. Specifically, we show that fluorescent light from a dye-doped aqueous solution generated in the core of a nanoprinted dual-ring light cage can be efficiently captured and guided to the waveguide ports. Notably, the fluorescence collection occurs predominantly in the fundamental mode, a property that distinguishes it from evanescent field-based waveguide detection schemes that favor collection in higher-order modes. Through exploiting the flexibility of waveguide design and 3D nanoprinting, both excitation and emission have been localized in the high transmission domains of the fundamental core mode. Fast diffusion, detection limits comparable to bulk measurements, and the potential of this approach in terms of device integration were demonstrated. Together with previous results on absorption spectroscopy, the achievements presented here suggest that the optofluidic light cage concept defines a novel photonic platform for integrated on-chip spectroscopic devices and real-time sensors compatible with both the fiber circuitry and microfluidics. Applications in areas such as bioanalytics and environmental sciences are conceivable, while more sophisticated applications such as nanoparticle tracking analysis and integrated Raman spectroscopy could be envisioned,

Loading...
Thumbnail Image
Item

Publisher Correction: Coherent interaction of atoms with a beam of light confined in a light cage

2021, Davidson-Marquis, Flavie, Gargiulo, Julian, Gómez-López, Esteban, Jang, Bumjoon, Kroh, Tim, Müller, Chris, Ziegler, Mario, Maier, Stefan A., Kübler, Harald, Schmidt, Markus A., Benson, Oliver

[no abstract available: correction of https://doi.org/10.1038/s41377-021-00556-z published online 31 May 2021; After publication of this article, it is noticed the article contained an error. In Table 1, the data in the line ‘Length (mm)’ is missing. The complete Table 1 is provided in this correction.]