Search Results

Now showing 1 - 3 of 3
  • Item
    A review on stretchable magnetic field sensorics
    (Bristol : IOP Publ., 2020) Melzer, M.; Makarov, D.; Schmidt, O.G.
    The current establishment of stretchable electronics to form a seamless link between soft or even living materials and the digital world is at the forefront of multidisciplinary research efforts, bridging physics, engineering and materials science. Magnetic functionalities can provide a sense of displacement, orientation or proximity to this novel formulation of electronics. This work reviews the recent development of stretchable magnetic field sensorics relying on the combination of metallic thin films revealing a giant magnetoresistance effect with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved by specific morphologic features (e.g. wrinkles or microcracks), which accommodate the applied tensile deformation while maintaining the electrical and magnetic integrity of the sensor device. The entire development, from the demonstration of the world's first elastically stretchable magnetic sensor to the realization of a technology platform for robust, ready-to-use elastic magnetosensorics is described. Soft giant magnetoresistive elements exhibiting the same sensing performance as on conventional rigid supports, but with fully strain invariant properties up to 270% stretching have been demonstrated. With their unique mechanical properties, these sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. Stretchable magnetoelectronic sensors can equip soft and epidermal electronic systems with navigation, orientation, motion tracking and touchless control capabilities. A variety of novel technologies, like electronic skins, smart textiles, soft robotics and actuators, active medical implants and soft consumer electronics will benefit from these new magnetic functionalities. © 2019 IOP Publishing Ltd.
  • Item
    Mesoscale Dzyaloshinskii-Moriya interaction: Geometrical tailoring of the magnetochirality
    (London : Nature Publishing Group, 2018) Volkov, O.M.; Sheka, D.D.; Gaididei, Y.; Kravchuk, V.P.; Rößler, U.K.; Fassbender, J.; Makarov, D.
    Crystals with broken inversion symmetry can host fundamentally appealing and technologically relevant periodical or localized chiral magnetic textures. The type of the texture as well as its magnetochiral properties are determined by the intrinsic Dzyaloshinskii-Moriya interaction (DMI), which is a material property and can hardly be changed. Here we put forth a method to create new artificial chiral nanoscale objects with tunable magnetochiral properties from standard magnetic materials by using geometrical manipulations. We introduce a mesoscale Dzyaloshinskii-Moriya interaction that combines the intrinsic spin-orbit and extrinsic curvature-driven DMI terms and depends both on the material and geometrical parameters. The vector of the mesoscale DMI determines magnetochiral properties of any curved magnetic system with broken inversion symmetry. The strength and orientation of this vector can be changed by properly choosing the geometry. For a specific example of nanosized magnetic helix, the same material system with different geometrical parameters can acquire one of three zero-temperature magnetic phases, namely, phase with a quasitangential magnetization state, phase with a periodical state and one intermediate phase with a periodical domain wall state. Our approach paves the way towards the realization of a new class of nanoscale spintronic and spinorbitronic devices with the geometrically tunable magnetochirality.
  • Item
    Evidence of the Anomalous Fluctuating Magnetic State by Pressure-Driven 4f Valence Change in EuNiGe3
    (Washington, DC : ACS, 2023) Chen, K.; Luo, C.; Zhao, Y.; Baudelet, F.; Maurya, A.; Thamizhavel, A.; Rößler, U. K.; Makarov, D.; Radu, F.
    In rare-earth compounds with valence fluctuation, the proximity of the 4f level to the Fermi energy leads to instabilities of the charge configuration and the magnetic moment. Here, we provide direct experimental evidence for an induced magnetic polarization of the Eu3+ atomic shell with J = 0, due to intra-atomic exchange and spin-orbital coupling interactions with the Eu2+ atomic shell. By applying external pressure, a transition from antiferromagnetic to a fluctuating behavior in EuNiGe3 single crystals is probed. Magnetic polarization is observed for both valence states of Eu2+ and Eu3+ across the entire pressure range. The anomalous magnetism is discussed in terms of a homogeneous intermediate valence state where frustrated Dzyaloshinskii-Moriya couplings are enhanced by the onset of spin-orbital interaction and engender a chiral spin-liquid-like precursor.