Search Results

Now showing 1 - 2 of 2
  • Item
    Supervised discriminant analysis for droplet micro-magnetofluidics
    (Heidelberg : Springer, 2015) Lin, Gungun; Fomin, Vladimir M.; Makarov, Denys; Schmidt, Oliver G.
    We apply the technique of supervised discriminant analysis (SDA) for in-flow detection in droplet-based magnetofluidics. Based on the SDA, we successfully discriminate bivariant droplets of different volumes containing different encapsulated magnetic content produced by a GMR-based lab-on-chip platform. We demonstrate that the accuracy of discrimination is superior when the correlation of variables for data training is included to the case when the spatial distribution of variables is considered. Droplets produced with differences in ferrofluid concentration of 2.5 mg/ml and volume of 200 pl have been identified with high accuracy (98 %), indicating the significance of SDA for e.g. the discrimination in magnetic immuno-agglutination assays. Furthermore, the results open the way for the development of a unique magnetofluidic platform for future applications in multiplexed droplet-based barcoding assays and screening.
  • Item
    Strong ferromagnetically-coupled spin valve sensor devices for droplet magnetofluidics
    (Basel : MDPI, 2015) Lin, Gungun; Makarov, Denys; Schmidt, Oliver G
    We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays.