Search Results

Now showing 1 - 2 of 2
  • Item
    Spectral Theory of Infinite Quantum Graphs
    (Cham (ZG) : Springer International Publishing AG, 2018) Exner, Pavel; Kostenko, Aleksey; Malamud, Mark; Neidhardt, Hagen
    We investigate quantum graphs with infinitely many vertices and edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph and the corresponding properties of a certain weighted discrete Laplacian on the underlying discrete graph. Using this connection together with spectral theory of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new results on spectral properties of quantum graphs. Namely, we prove several self-adjointness results including a Gaffney-type theorem. We investigate the problem of lower semiboundedness, prove several spectral estimates (bounds for the bottom of spectra and essential spectra of quantum graphs, CLR-type estimates) and study spectral types.
  • Item
    Sturm-Liouville boundary value problems with operator potentials and unitary equivalence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Malamud, Mark; Neidhardt, Hagen
    Consider the minimal Sturm-Liouville operator A = A_rm min generated by the differential expression A := -fracd^2dt^2 + T in the Hilbert space L^2(R_+,cH) where T = T^*ge 0 in cH. We investigate the absolutely continuous parts of different self-adjoint realizations of cA. In particular, we show that Dirichlet and Neumann realizations, A^D and A^N, are absolutely continuous and unitary equivalent to each other and to the absolutely continuous part of the Krein realization. Moreover, if infsigma_ess(T) = infgs(T) ge 0, then the part wt A^acE_wt A(gs(A^D)) of any self-adjoint realization wt A of cA is unitarily equivalent to A^D. In addition, we prove that the absolutely continuous part wt A^ac of any realization wt A is unitarily equivalent to A^D provided that the resolvent difference (wt A