Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

On the Darwin--Howie--Whelan equations for the scattering of fast electrons described by the Schrödinger equation

2020, Koprucki, Thomas, Maltsi, Anieza, Mielke, Alexander

The Darwin-Howie-Whelan equations are commonly used to describe and simulate the scattering of fast electrons in transmission electron microscopy. They are a system of infinitely many envelope functions, derived from the Schrödinger equation. However, for the simulation of images only a finite set of envelope functions is used, leading to a system of ordinary differential equations in thickness direction of the specimen. We study the mathematical structure of this system and provide error estimates to evaluate the accuracy of special approximations, like the two-beam and the systematic-row approximation.

Loading...
Thumbnail Image
Item

Symmetries in TEM imaging of crystals with strain

2022, Koprucki, Thomas, Maltsi, Anieza, Mielke, Alexander

TEM images of strained crystals often exhibit symmetries, the source of which is not always clear. To understand these symmetries we distinguish between symmetries that occur from the imaging process itself and symmetries of the inclusion that might affect the image. For the imaging process we prove mathematically that the intensities are invariant under specific transformations. A combination of these invariances with specific properties of the strain profile can then explain symmetries observed in TEM images. We demonstrate our approach to the study of symmetries in TEM images using selected examples in the field of semiconductor nanostructures such as quantum wells and quantum dots.

Loading...
Thumbnail Image
Item

Symmetries in transmission electron microscopy imaging of crystals with strain

2022, Koprucki, Thomas, Maltsi, Anieza, Mielke, Alexander

Transmission electron microscopy (TEM) images of strained crystals often exhibit symmetries, the source of which is not always clear. To understand these symmetries, we distinguish between symmetries that occur from the imaging process itself and symmetries of the inclusion that might affect the image. For the imaging process, we prove mathematically that the intensities are invariant under specific transformations. A combination of these invariances with specific properties of the strain profile can then explain symmetries observed in TEM images. We demonstrate our approach to the study of symmetries in TEM images using selected examples in the field of semiconductor nanostructures such as quantum wells and quantum dots.