Search Results

Now showing 1 - 4 of 4
  • Item
    Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2017) Meulendijks, Nicole; Burghoorn, Marieke; van Ee, Renz; Mourad, Maurice; Mann, Daniel; Keul, Helmut; Bex, Guy; van Veldhoven, Emile; Verheijen, Marcel; Buskens, Pascal
    For the preparation of electrically conductive composites, various combinations of cellulose and conducting materials such as polymers, metals, metal oxides and carbon have been reported. The conductivity of these cellulose composites reported to date ranges from 10−6 to 103 S cm−1. Cellulose nanocrystals (CNCs) are excellent building blocks for the production of high added value coatings. The essential process steps for preparing such coatings, i.e. surface modification of CNCs dispersed in water and/or alcohol followed by application of the dispersion to substrate samples using dip coating, are low cost and easily scalable. Here, we present coatings consisting of Ag modified CNCs that form a percolated network upon solvent evaporation. After photonic sintering, the resulting coatings are electrically conductive with an unprecedented high conductivity of 2.9 × 104 S cm−1. Furthermore, we report the first colloidal synthesis that yields CNCs with a high degree of Ag coverage on the surface, which is a prerequisite for obtaining coatings with high electrical conductivity. © 2017, The Author(s).
  • Item
    The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells
    (New York, NY [u.a.] : Springer, 2017) Mann, Daniel; Nascimento-Duplat, Daniel; Keul, Helmut; Möller, Martin; Verheijen, Marcel; Xu, Man; Urbach, H. Paul; Adam, Aurèle J. L.; Buskens, Pascal
    Au and Ag nanoshells are of interest for a wide range of applications. The plasmon resonance of such nanoshells is the property of interest and can be tuned in a broad spectral regime, ranging from the ultraviolet to the mid-infrared. To date, a large number of manuscripts have been published on the optics of such nanoshells. Few of these, however, address the effect of particle size distribution and metal shell imperfections on the plasmon resonance. Both are inherent to the chemical synthesis of metal nanoshells and therefore to a large extent unavoidable. It is of vital importance to understand their effect on the plasmon resonance, since this determines the scope and limitations of the technology and may have a direct impact on the application of such particles. Here, we elucidate the effect of particle size distribution and imperfections in the metal shell on the plasmon resonance of Au and Ag nanoshells. The size of the polystyrene core and the thickness of the Au and Ag shells are systematically varied to study their influence on the plasmon resonance, and the results are compared to values obtained through optical simulations using extended Mie theory and finite element method. Discrepancies between theory and practice are studied in detail and discussed extensively. Quantitative information on the minimum thickness of the metal shell, which is required to realize a satisfactory plasmon resonance of a metal nanoshell, is provided for Au and Ag.
  • Item
    Oligoglycidol-functionalised styrene macromolecules as reactive surfactants in the emulsion polymerisation of styrene: The impact of chain length and concentration on particle size and colloidal stability
    (Basel : MDPI AG, 2020) Waulthers, Kim; van Zandvoort, Ryan; Castermans, Sam; Welzen, Jeroen; Baeten, Evelien; Stout, Kathleen; Keul, Helmut; Mann, Daniel; Buskens, Pascal
    Reactive surfactants (surfmers), which are covalently attached to the surface of sub-micron sized polymer particles during emulsion polymerisation, are applied to tailor the surface functionality of polymer particles for an application of choice. We present a systematic study on the use of oligoglycidol-functionalised styrene macromolecules as surfmers in the emulsion polymerization of styrene. Firstly, we report the impact of the surfmer concentration on the particle size for polymerisations performed above and below the critical micelle concentration. Secondly, we report the influence of the oligoglycidol chain length on the particle size. Thirdly, we conducted experiments to analyse the influence of the surfmer concentration and its chain length on the colloidal stability of the aqueous polystyrene nanoparticles in sodium chloride solutions. We demonstrated that the size of polystyrene particles could be influenced by changing both the surfmer concentration and its chain length. Furthermore, we showed that the colloidal stability of the oligoglycidol-functionalized polystyrene particles is dependent on the particle size, and not directly related to the oligoglycidol chain length. © 2020 by the authors.
  • Item
    Synthesis of Polystyrene⁻Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches
    (Basel : MDPI, 2017) Mann, Daniel; Voogt, Stefanie; Keul, Helmut; Möller, Martin; Verheijen, Marcel; Buskens, Pascal
    Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. Very recently, we reported the colloidal synthesis of Au semishells, making use of polystyrene–polyphenylsiloxane Janus particles as an intermediate product (Chem. Commun. 2017, 53, 3898–3901). Here, we demonstrate that these Janus particles are realized through colloidal assembly of spherical glucose-functionalized polystyrene particles and an emulsion of phenyltrimethoxysilane in aqueous ammonia, followed by interfacial polycondensation to form the polyphenylsiloxane patch. Both the polystyrene spheres and the emulsion of Ph-TMS in aqueous ammonia are stabilized by a surfmer—a reactive surfactant. The colloidal assembly reported in this manuscript proceeds with an unexpected high selectivity, which makes this process exceptionally interesting for the synthesis of Janus particles. Furthermore, we report insights into the details of the mechanism of formation of these Janus particles, and apply those to adapt the synthesis conditions to produce polystyrene particles selectively decorated with multiple polyphenylsiloxane patches, e.g., raspberry particles.