Search Results

Now showing 1 - 4 of 4
  • Item
    The Polarimetric and Helioseismic Imager on Solar Orbiter
    (Les Ulis : EDP Sciences , 2020) Solanki, S.K.; del Toro Iniesta, J.C.; Woch, J.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Appourchaux, T.; Martínez Pillet, V.; Pérez-Grande, I.; Sanchis Kilders, E.; Schmidt, W.; Garranzo-García, D.; Laguna, H.; Martín, J.A.; Navarro, R.; Villanueva, J.; Núñez Peral, A.; Royo, M.; Sánchez, A.; Silva-López, M.; Fourmond, J.-J.; Berkefeld, Th.; Ruiz de Galarreta, C.; Bouzit, M.; Hervier, V.; Le Clec'h, J.C.; Szwec, N.; Chaigneau, M.; Buttice, V.; Volkmer, R.; Dominguez-Tagle, C.; Philippon, A.; Baumgartner, J.; Boumier, P.; Le Cocguen, R.; Baranjuk, G.; Bell, A.; Heidecke, F.; Maue, T.; Blanco Rodríguez, J.; Nakai, E.; Scheiffelen, T.; Sigwarth, M.; Soltau, D.; Domingo, V.; Fiethe, B.; Ferreres Sabater, A.; Gasent Blesa, J.L.; Rodríguez Martínez, P.; Osorno Caudel, D.; Bosch, J.; Casas, A.; Carmona, M.; Gómez Cama, J.M.; Herms, A.; Roma, D.; Guan, Y.; Alonso, G.; Gómez-Sanjuan, A.; Piqueras, J.; Torralbo, I.; Lange, T.; Michel, H.; Michalik, H.; Bonet, J.A.; Fahmy, S.; Müller, D.; Zouganelis, I.; Deutsch, W.; Busse, D.; Fernandez-Rico, G.; Grauf, B.; Gizon, L.; Heerlein, K.; Kolleck, M.; Lagg, A.; Meller, R.; Müller, R.; Schühle, U.; Staub, J.; Enge, R.; Albert, K.; Alvarez Copano, M.; Beckmann, U.; Bischoff, J.; Frahm, S.; Germerott, D.; Guerrero, L.; Löptien, B.; Meierdierks, T.; Oberdorfer, D.; Papagiannaki, I.; Ramanath, S.; Bellot Rubio, L.R.; Schou, J.; Werner, S.; Yang, D.; Zerr, A.; Bergmann, M.; Bochmann, J.; Heinrichs, J.; Meyer, S.; Monecke, M.; Müller, M.-F.; Cobos Carracosa, J.P.; Sperling, M.; Álvarez García, D.; Aparicio, B.; Balaguer Jiménez, M.; Girela, F.; Hernández Expósito, D.; Herranz, M.; Labrousse, P.; López Jiménez, A.; Orozco Suárez, D.; Ramos, J.L.; Barandiarán, J.; Vera, I.; Bastide, L.; Campuzano, C.; Cebollero, M.; Dávila, B.; Fernández-Medina, A.; García Parejo, P.
    This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO_3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders (LCVRs). The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2kx2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope (FDT), covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope (HRT), can resolve structures as small as 200km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line.
  • Item
    Evolution of the fine structure of magnetic fields in the quiet Sun: Observations from Sunrise/IMaX and extrapolations
    (Heidelberg : Springer, 2013) Wiegelmann, T.; Solanki, S.K.; Borrero, J.M.; Peter, H.; Barthol, P.; Gandorfer, A.; Martínez Pillet, V.; Schmidt, W.; Knölker, M.
    Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun.
  • Item
    The Sunrise Mission
    (Dordrecht [u.a.] : Springer Science + Business Media, 2010) Barthol, P.; Gandorfer, A.; Solanki, S.K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Riethmüller, T.L.; Tomasch, G.; Knölker, M.; Lites, B.W.; Card, G.; Elmore, D.; Fox, J.; Lecinski, A.; Nelson, P.; Summers, R.; Watt, A.; Martínez Pillet, V.; Bonet, J.A.; Schmidt, W.; Berkefeld, T.; Title, A.M.; Domingo, V.; Gasent Blesa, J.L.; del Toro, Iniesta, J.C.; López Jiménez, A.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Widani, C.; Haberler, P.; Härtel, K.; Kampf, D.; Levin, T.; Pérez Grande, I.; Sanz-Andrés, A.; Schmidt, E.
    The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed. © 2010 The Author(s).
  • Item
    The Filter Imager SuFI and the Image Stabilization and Light Distribution System ISLiD of the Sunrise Balloon-Borne Observatory: Instrument Description
    (Dordrecht [u.a.] : Springer Science + Business Media, 2011) Gandorfer, A.; Grauf, B.; Barthol, P.; Riethmüller, T.L.; Solanki, S.K.; Chares, B.; Deutsch, W.; Ebert, S.; Feller, A.; Germerott, D.; Heerlein, K.; Heinrichs, J.; Hirche, D.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Schäfer, R.; Tomasch, G.; Knölker, M.; Martínez Pillet, V.; Bonet, J.A.; Schmidt, W.; Berkefeld, T.; Feger, B.; Heidecke, F.; Soltau, D.; Tischenberg, A.; Fischer, A.; Title, A.; Anwand, H.; Schmidt, E.
    We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments' working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data. © 2010 The Author(s).