Search Results

Now showing 1 - 8 of 8
  • Item
    Catalytic Performance of Lanthanum Vanadate Catalysts in Ammoxidation of 2-Methylpyrazine
    (Basel : MDPI, 2016) Kalevaru, Venkata; Dhachapally, Naresh; Martin, Andreas
    The influence of reaction conditions on the catalytic performance of lanthanum vanadate (La0.1V0.9Ox) catalyst in the ammoxidation of 2-methylpyrazine (MP) to 2-cyanopyarazine (CP) has been investigated. This novel catalytic material exhibited remarkably good performance with very high space-time-yields (STY) of CP. The reaction parameters such as the effect of temperature, gas hourly space velocity (GHSV) and all other reaction variables (e.g., NH3, air, and MP feed rates) on the catalytic performance were explored and optimized. For example, an increase in MP feed rate from 2 to >16 mmol/h led to decreased conversion of MP but increased the STY of CP significantly. Optimal performance was achieved when the reaction temperature was 420 °C and the molar ratio of 2-MP, ammonia, air, H2O and N2 in the feed gas was set to 1:7:26:13:22. Under these optimal reaction conditions, the catalyst showed a MP conversion of ~100%, CP selectivity of 86%, and STY of >500 gCP/(kgcat∙h). On the other hand, the formation of pyrazine (Py) as a by-product was found to be high when the NH3:MP ratio was lower at increased contact time. This suggests possible differences in the reaction mechanism pathways with respect to feed composition over La0.1V0.9Ox catalysts.
  • Item
    Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions
    (Basel : MDPI, 2016) Alshammari, Ahmad; Kalevaru, Venkata Narayana; Martin, Andreas
    Supported bimetallic nanoparticles (SBN) are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach) will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.
  • Item
    Zeolite Catalysis
    (Basel : MDPI, 2016) Martin, Andreas
    [no abstract available]
  • Item
    Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite
    (Basel : MDPI, 2015) Vu, Xuan Hoan; Nguyen, Sura; Dang, Tung Thanh; Phan, Binh Minh Quoc; Nguyen, Duc Anh; Armbruster, Udo; Martin, Andreas
    The catalytic cracking of triglyceride-rich biomass toward C2–C4 olefins was evaluated over a hierarchically textured nano-ZSM-5/SBA-15 analog composite (ZSC-24) under fluid catalytic cracking (FCC) conditions. The experiments were performed on a fully automated Single-Receiver Short-Contact-Time Microactivity Test unit (SR-SCT-MAT, Grace Davison) at 550 °C and different catalyst-to-oil mass ratios (0–1.2 g∙g−1). The ZSC-24 catalyst is very effective for transformation of triglycerides to valuable hydrocarbons, particularly lower olefins. The selectivity to C2–C4 olefins is remarkably high (>90%) throughout the investigated catalyst-to-oil ratio range. The superior catalytic performance of the ZSC-24 catalyst can be attributed to the combination of its medium acid site amount and improved molecular transport provided by the bimodal pore system, which effectively suppresses the secondary reactions of primarily formed lower olefins
  • Item
    Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane
    (Basel : MDPI, 2017-5-16) Ha, Quan Luu Manh; Armbruster, Udo; Atia, Hanan; Schneider, Matthias; Lund, Henrik; Agostini, Giovanni; Radnik, Jörg; Vuong, Huyen Thanh; Martin, Andreas
    Methane dry reforming (DRM) was investigated over highly active Ni catalysts with low metal content (2.5 wt %) supported on Mg-Al mixed oxide. The aim was to minimize carbon deposition and metal sites agglomeration on the working catalyst which are known to cause catalyst deactivation. The solids were characterized using N2 adsorption, X-ray diffraction, temperature-programmed reduction, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The results showed that MgO-Al2O3 solid solution phases are obtained when calcining Mg-Al hydrotalcite precursor in the temperature range of 550–800 °C. Such phases contribute to the high activity of catalysts with low Ni content even at low temperature (500 °C). Modifying the catalyst preparation with citric acid significantly slows the coking rate and reduces the size of large octahedrally coordinated NiO-like domains, which may easily agglomerate on the surface during DRM. The most effective Ni catalyst shows a stable DRM course over 60 h at high weight hourly space velocity with very low coke deposition. This is a promising result for considering such catalyst systems for further development of an industrial DRM technology.
  • Item
    Methanation of CO2 on Ni/Al2O3 in a Structured Fixed-Bed Reactor—A Scale-Up Study
    (Basel : MDPI, 2017-5-15) Türks, Daniel; Mena, Hesham; Armbruster, Udo; Martin, Andreas
    Due to the ongoing change of energy supply, the availability of a reliable high-capacity storage technology becomes increasingly important. While conventional large-scale facilities are either limited in capacity respective supply time or their extension potential is little (e.g., pumped storage power stations), decentralized units could contribute to energy transition. The concepts of PtX (power-to-X) storage technologies and in particular PtG (power-to-gas) aim at fixation of electric power in chemical compounds. CO2 hydrogenation (methanation) is the foundation of the PtG idea as H2 (via electrolysis) and CO2 are easily accessible. Methane produced in this way, often called substitute natural gas (SNG), is a promising solution since it can be stored in the existing gas grid, tanks or underground cavern storages. Methanation is characterized by a strong exothermic heat of reaction which has to be handled safely. This work aims at getting rid of extreme temperature hot-spots in a tube reactor by configuring the catalyst bed structure. Proof of concept studies began with a small tube reactor (V = 12.5 cm3) with a commercial 18 wt % Ni/Al2O3 catalyst. Later, a double-jacket tube reactor was built (V = 452 cm3), reaching a production rate of 50 L/h SNG. The proposed approach not only improves the heat management and process safety, but also increases the specific productivity and stability of the catalyst remarkably.
  • Item
    Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO
    (Basel : MDPI, 2016) Huynh, Thuan; Armbruster, Udo; Kreyenschulte, Carsten; Nguyen, Luong; Phan, Binh; Nguyen, Duc; Martin, Andreas
    Performances of bimetallic catalysts (Ni-Co) supported on different acidic carriers (HZSM-5, HBeta, HY, ZrO2) and corresponding monometallic Ni catalysts in aqueous phase hydrodeoxygenation of phenol were compared in batch and continuous flow modes. The results revealed that the support acidity plays an important role in deoxygenation as it mainly controls the oxygen-removing steps in the reaction network. At the same time, sufficient hydrothermal stability of a solid catalyst is essential. Batch experiments revealed 10Ni10Co/HZSM-5 to be the best-performing catalyst in terms of conversion and cyclohexane yield. Complementary continuous runs provided more insights into the relationship between catalyst structure, efficiency and stability. After 24 h on-stream, the catalyst still reveals 100% conversion and a slight loss (from 100% to 90%) in liquid hydrocarbon selectivity. The observed alloy of Co with Ni increased dispersion and stability of Ni-active sites, and combination with HZSM-5 resulted in a well-balanced ratio of metal and acid sites which promoted all necessary steps in preferred pathways. This was proved by studies of fresh and spent catalysts using various characterization techniques (N2 physisorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and infrared spectroscopy of adsorbed pyridine (pyr-IR)).
  • Item
    Micro/Mesoporous Zeolitic Composites: Recent Developments in Synthesis and Catalytic Applications
    (Basel : MDPI, 2016) Vu, Xuan; Armbruster, Udo; Martin, Andreas
    Micro/mesoporous zeolitic composites (MZCs) represent an important class of hierarchical zeolitic materials that have attracted increasing attention in recent years. By introducing an additional mesoporous phase interconnected with the microporosity of zeolites, a hierarchical porous system of MZCs is formed which facilitates molecular transport while preserving the intrinsic catalytic properties of zeolites. Thus, these materials offer novel perspectives for catalytic applications. Over the years, numerous synthesis strategies toward the formation of MZCs have been realized and their catalytic applications have been reported. In this review, the three main synthesis routes, namely direct synthesis using zeolite precursors, recrystallization of zeolites, and zeolitization of preformed mesoporous materials are thoroughly discussed, with focus on prior works and the most recent developments along with prominent examples given from the literature. In addition, the significant improvement in the catalytic properties of MZCs in a wide range of industrially relevant reactions is presented through several representative cases. Some perspectives for the future development of MZCs are also given.