Search Results

Now showing 1 - 10 of 12
  • Item
    Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis
    (Göttingen : Copernicus GmbH, 2011) Donges, J.F.; Donner, R.V.; Rehfeld, K.; Marwan, N.; Trauth, M.H.; Kurths, J.
    The analysis of palaeoclimate time series is usually affected by severe methodological problems, resulting primarily from non-equidistant sampling and uncertain age models. As an alternative to existing methods of time series analysis, in this paper we argue that the statistical properties of recurrence networks - a recently developed approach - are promising candidates for characterising the system's nonlinear dynamics and quantifying structural changes in its reconstructed phase space as time evolves. In a first order approximation, the results of recurrence network analysis are invariant to changes in the age model and are not directly affected by non-equidistant sampling of the data. Specifically, we investigate the behaviour of recurrence network measures for both paradigmatic model systems with non-stationary parameters and four marine records of long-term palaeoclimate variations. We show that the obtained results are qualitatively robust under changes of the relevant parameters of our method, including detrending, size of the running window used for analysis, and embedding delay. We demonstrate that recurrence network analysis is able to detect relevant regime shifts in synthetic data as well as in problematic geoscientific time series. This suggests its application as a general exploratory tool of time series analysis complementing existing methods.
  • Item
    Estimation of sedimentary proxy records together with associated uncertainty
    (Göttingen : Copernicus GmbH, 2015) Goswami, B.; Heitzig, J.; Rehfeld, K.; Marwan, N.; Anoop, A.; Prasad, S.; Kurths, J.
  • Item
    Spatial structures and directionalities in Monsoonal precipitation over South Asia
    (Göttingen : Copernicus GmbH, 2010) Malik, N.; Marwan, N.; Kurths, J.
    Precipitation during the monsoon season over the Indian subcontinent occurs in form of enormously complex spatiotemporal patterns due to the underlying dynamics of atmospheric circulation and varying topography. Employing methods from nonlinear time series analysis, we study spatial structures of the rainfall field during the summer monsoon and identify principle regions where the dynamics of monsoonal rainfall is more coherent or homogenous. Moreover, we estimate the time delay patterns of rain events. Here we present an analysis of two separate high resolution gridded data sets of daily rainfall covering the Indian subcontinent. Using the method of event synchronization (ES), we estimate regions where heavy rain events during monsoon happen in some lag synchronised form. Further using the delay behaviour of rainfall events, we estimate the directionalities related to the progress of such type of rainfall events. The Active (break) phase of a monsoon is characterised by an increase(decrease) of rainfall over certain regions of the Indian subcontinent. We show that our method is able to identify regions of such coherent rainfall activity.
  • Item
    Comparison of correlation analysis techniques for irregularly sampled time series
    (Göttingen : Copernicus GmbH, 2011) Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.
    Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation) or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques. All methods have comparable root mean square errors (RMSEs) for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF) for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF) the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods. We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory) is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.
  • Item
    Finding recurrence networks' threshold adaptively for a specific time series
    (Göttingen : Copernicus GmbH, 2014) Eroglu, D.; Marwan, N.; Prasad, S.; Kurths, J.
    Recurrence-plot-based recurrence networks are an approach used to analyze time series using a complex networks theory. In both approaches-recurrence plots and recurrence networks-, a threshold to identify recurrent states is required. The selection of the threshold is important in order to avoid bias of the recurrence network results. In this paper, we propose a novel method to choose a recurrence threshold adaptively. We show a comparison between the constant threshold and adaptive threshold cases to study period-chaos and even period-period transitions in the dynamics of a prototypical model system. This novel method is then used to identify climate transitions from a lake sediment record.
  • Item
    An extended singular spectrum transformation (SST) for the investigation of Kenyan precipitation data
    (Göttingen : Copernicus GmbH, 2013) Itoh, N.; Marwan, N.
    In this paper a change-point detection method is proposed by extending the singular spectrum transformation (SST) developed as one of the capabilities of singular spectrum analysis (SSA). The method uncovers change points related with trends and periodicities. The potential of the proposed method is demonstrated by analysing simple model time series including linear functions and sine functions as well as real world data (precipitation data in Kenya). A statistical test of the results is proposed based on a Monte Carlo simulation with surrogate methods. As a result, the successful estimation of change points as inherent properties in the representative time series of both trend and harmonics is shown. With regards to the application, we find change points in the precipitation data of Kenyan towns (Nakuru, Naivasha, Narok, and Kisumu) which coincide with the variability of the Indian Ocean Dipole (IOD) suggesting its impact of extreme climate in East Africa.
  • Item
    Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka
    (Göttingen : Copernicus GmbH, 2014) Stolbova, V.; Martin, P.; Bookhagen, B.; Marwan, N.; Kurths, J.
    This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.
  • Item
    Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs
    (Göttingen : Copernicus GmbH, 2014) Zou, Y.; Donner, R.V.; Marwan, N.; Small, M.; Kurths, J.
    Solar activity is characterized by complex dynamics superimposed onto an almost periodic, approximately 11-year cycle. One of its main features is the presence of a marked, time-varying hemispheric asymmetry, the deeper reasons for which have not yet been completely uncovered. Traditionally, this asymmetry has been studied by considering amplitude and phase differences. Here, we use visibility graphs, a novel tool of nonlinear time series analysis, to obtain complementary information on hemispheric asymmetries in dynamical properties. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between factors relating to statistical and dynamical properties, i.e., effects due to the probability distribution and the regularity of observed fluctuations. We demonstrate that temporal changes in the hemispheric predominance of the graph properties lag those directly associated with the total hemispheric sunspot areas. Our findings open a new dynamical perspective on studying the north-south sunspot asymmetry, which is to be further explored in future work.
  • Item
    Review: Visual analytics of climate networks
    (Göttingen : Copernicus GmbH, 2015) Nocke, T.; Buschmann, S.; Donges, J.F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
  • Item
    Regional and inter-regional effects in evolving climate networks
    (Göttingen : Copernicus GmbH, 2014) Hlinka, J.; Hartman, D.; Jajcay, N.; Vejmelka, M.; Donner, R.; Marwan, N.; Kurths, J.; Paluš, M.
    Complicated systems composed of many interacting subsystems are frequently studied as complex networks. In the simplest approach, a given real-world system is represented by an undirected graph composed of nodes standing for the subsystems and non-oriented unweighted edges for interactions present among the nodes; the characteristic properties of the graph are subsequently studied and related to the system's behaviour. More detailed graph models may include edge weights, orientations or multiple types of links; potential time-dependency of edges is conveniently captured in so-called evolving networks. Recently, it has been shown that an evolving climate network can be used to disentangle different types of El Niño episodes described in the literature. The time evolution of several graph characteristics has been compared with the intervals of El Niño and La Niña episodes. In this study we identify the sources of the evolving network characteristics by considering a reduced-dimensionality description of the climate system using network nodes given by rotated principal component analysis. The time evolution of structures in local intra-component networks is studied and compared to evolving inter-component connectivity.