Search Results

Now showing 1 - 10 of 14
  • Item
    Complex systems approaches for Earth system data analysis
    (Bristol : IOP Publ., 2021) Boers, Niklas; Kurths, Jürgen; Marwan, Norbert
    Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many social, economic, and technological systems. The defining characteristics of complex systems imply that their dynamics can often only be captured from the analysis of simulated or observed data. Here, we summarize recent advances in nonlinear data analysis of both simulated and real-world complex systems, with a focus on recurrence analysis for the investigation of individual or small sets of time series, and complex networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the recent success of these two key concepts of complexity science with an emphasis on applications for the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present several prominent examples where challenging problems in Earth system and climate science have been successfully addressed using recurrence analysis and complex networks. We outline several open questions for future lines of research in the direction of data-based complex system analysis, again with a focus on applications in the Earth sciences, and suggest possible combinations with suitable machine learning approaches. Beyond Earth system analysis, these methods have proven valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or engineering.
  • Item
    Multiband Wavelet Age Modeling for a ∼293 m (∼600 kyr) Sediment Core From Chew Bahir Basin, Southern Ethiopian Rift
    (Lausanne : Frontiers Media, 2021) Duesing, Walter; Berner, Nadine; Deino, Alan L.; Foerster, Verena; Kraemer, K. Hauke; Marwan, Norbert; Trauth, Martin H.
    The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits requires sophisticated tuning techniques that can accommodate continuous long-term changes in sedimentation rates. However, most tuning methods use stationary filters that are unable to take into account such long-term variations in accumulation rates. To overcome this problem we present herein a new multiband wavelet age modeling (MUBAWA) technique that is particularly suitable for such situations and demonstrate its use on a 293 m composite core from the Chew Bahir basin, southern Ethiopian rift. In contrast to traditional tuning methods, which use a single, defined bandpass filter, the new method uses an adaptive bandpass filter that adapts to changes in continuous spatial frequency evolution paths in a wavelet power spectrum, within which the wavelength varies considerably along the length of the core due to continuous changes in long-term sedimentation rates. We first applied the MUBAWA technique to a synthetic data set before then using it to establish an age model for the approximately 293 m long composite core from the Chew Bahir basin. For this we used the 2nd principal component of color reflectance values from the sediment, which showed distinct cycles with wavelengths of 10–15 and of ∼40 m that were probably a result of the influence of orbital cycles. We used six independent 40Ar/39Ar ages from volcanic ash layers within the core to determine an approximate spatial frequency range for the orbital signal. Our results demonstrate that the new wavelet-based age modeling technique can significantly increase the accuracy of tuned age models.
  • Item
    Analysis of Olive Grove Destruction by Xylella fastidiosa Bacterium on the Land Surface Temperature in Salento Detected Using Satellite Images
    (Basel : MDPI, 2021-9-16) Semeraro, Teodoro; Buccolieri, Riccardo; Vergine, Marzia; De Bellis, Luigi; Luvisi, Andrea; Emmanuel, Rohinton; Marwan, Norbert
    Agricultural activity replaces natural vegetation with cultivated land and it is a major cause of local and global climate change. Highly specialized agricultural production leads to extensive monoculture farming with a low biodiversity that may cause low landscape resilience. This is the case on the Salento peninsula, in the Apulia Region of Italy, where the Xylella fastidiosa bacterium has caused the mass destruction of olive trees, many of them in monumental groves. The historical land cover that characterized the landscape is currently in a transition phase and can strongly affect climate conditions. This study aims to analyze how the destruction of olive groves by X. fastidiosa affects local climate change. Land surface temperature (LST) data detected by Landsat 8 and MODIS satellites are used as a proxies for microclimate mitigation ecosystem services linked to the evolution of the land cover. Moreover, recurrence quantification analysis was applied to the study of LST evolution. The results showed that olive groves are the least capable forest type for mitigating LST, but they are more capable than farmland, above all in the summer when the air temperature is the highest. The differences in the average LST from 2014 to 2020 between olive groves and farmland ranges from 2.8 °C to 0.8 °C. Furthermore, the recurrence analysis showed that X. fastidiosa was rapidly changing the LST of the olive groves into values to those of farmland, with a difference in LST reduced to less than a third from the time when the bacterium was identified in Apulia six years ago. The change generated by X. fastidiosa started in 2009 and showed more or less constant behavior after 2010 without substantial variation; therefore, this can serve as the index of a static situation, which can indicate non-recovery or non-transformation of the dying olive groves. Failure to restore the initial environmental conditions can be connected with the slow progress of the uprooting and replacing infected plants, probably due to attempts to save the historic aspect of the landscape by looking for solutions that avoid uprooting the diseased plants. This suggests that social-ecological systems have to be more responsive to phytosanitary epidemics and adapt to ecological processes, which cannot always be easily controlled, to produce more resilient landscapes and avoid unwanted transformations.
  • Item
    Pacific climate reflected in Waipuna Cave drip water hydrochemistry
    (Munich : EGU, 2020) Nava-Fernandez, Cinthya; Hartland, Adam; Gázquez, Fernando; Kwiecien, Ola; Marwan, Norbert; Fox, Bethany; Hellstrom, John; Pearson, Andrew; Ward, Brittany; French, Amanda; Hodell, David A.; Immenhauser, Adrian; Breitenbach, Sebastian F.M.
    Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the Southern Westerlies and the El Niño-Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to assure the quality of ongoing palaeo-environmental reconstructions from this cave. Drip water from 10 drip sites was collected at roughly monthly intervals for a period of ca. 3 years for isotopic (d18O, dD, d-excess parameter, d17O, and 17Oexcess) and elemental (Mg=Ca and Sr=Ca) analysis. The monitoring included spot measurements of drip rates and cave air CO2 concentration. Cave air temperature and drip rates were also continuously recorded by automatic loggers. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics, we identified three types of discharge associated with hydrological routing in Waipuna Cave: (i) type 1-diffuse flow, (ii) type 2-fracture flow, and (iii) type 3-combined flow. Drip water isotopes do not reflect seasonal variability but show higher values during severe drought. Drip water d18O values are characterised by small variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough homogenisation in the epikarst. Mg=Ca and Sr=Ca ratios in drip waters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December-February), reflecting drier conditions and a lack of effec tive infiltration, and is weakest during the wet austral winter (July-September). The Sr=Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent or incongruent host rock dissolution, which manifests itself in lower Sr=Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide a valuable baseline for the rigorous interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes. © 2020 Author(s).
  • Item
    Optimal design of hydrometric station networks based on complex network analysis
    (Munich : EGU, 2020) Agarwal, Ankit; Marwan, Norbert; Maheswaran, Rathinasamy; Ozturk, Ugur; Kurths, Jürgen; Merz, Bruno
    Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail © Author(s) 2020.
  • Item
    Predicting the data structure prior to extreme events from passive observables using echo state network
    (Lausanne : Frontiers Media, 2022) Banerjee, Abhirup; Mishra, Arindam; Dana, Syamal K.; Hens, Chittaranjan; Kapitaniak, Tomasz; Kurths, Jürgen; Marwan, Norbert
    Extreme events are defined as events that largely deviate from the nominal state of the system as observed in a time series. Due to the rarity and uncertainty of their occurrence, predicting extreme events has been challenging. In real life, some variables (passive variables) often encode significant information about the occurrence of extreme events manifested in another variable (active variable). For example, observables such as temperature, pressure, etc., act as passive variables in case of extreme precipitation events. These passive variables do not show any large excursion from the nominal condition yet carry the fingerprint of the extreme events. In this study, we propose a reservoir computation-based framework that can predict the preceding structure or pattern in the time evolution of the active variable that leads to an extreme event using information from the passive variable. An appropriate threshold height of events is a prerequisite for detecting extreme events and improving the skill of their prediction. We demonstrate that the magnitude of extreme events and the appearance of a coherent pattern before the arrival of the extreme event in a time series affect the prediction skill. Quantitatively, we confirm this using a metric describing the mean phase difference between the input time signals, which decreases when the magnitude of the extreme event is relatively higher, thereby increasing the predictability skill.
  • Item
    Generalized Synchronization Between ENSO and Hydrological Variables in Colombia: A Recurrence Quantification Approach
    (Lausanne : Frontiers Media, 2020) Salas, Hernán D.; Poveda, Germán; Mesa, Óscar J.; Marwan, Norbert
    We use Recurrence Quantification Analysis (RQA) to study features of Generalized Synchronization (GS) between El Niño-Southern Oscillation (ENSO) and monthly hydrological anomalies (HyAns) of rainfall and streamflows in Colombia. To that end, we check the sensitivity of the RQA concerning diverse HyAns estimation methods, which constitutes a fundamental procedure for any climatological analysis at inter-annual timescales. In general, the GS and its sensitivity to HyAns methods are quantified by means of time-lagged joint recurrence analysis. Then, we link the GS results with the dynamics of major physical mechanisms that modulate Colombia's hydroclimatology, including the Caribbean, the CHOCO and the Orinoco Low-Level Jets (LLJs), and the Cross-Equatorial Flow (CEF) over northwestern Amazonia (southern Colombia). Our findings show that RQA exhibits significant differences depending on the HyAns methods. GS results are similar for the HyAns methods with variable annual cycle but the time-lags seem to be sensitive. On the other hand, our results make evident that HyAns in the Pacific, Caribbean, and Andean regions of Colombia exhibit strong (weak) GS with the ENSO signal during La Niña (El Niño), when hydrological anomalies are positive (negative). Results from the GS analysis allow us to identify spatial patterns of non-linear dependence between ENSO and the Colombian's climatology. The mentioned moisture transport sources constitute the interdependence mechanism and contribute to explain hydrological anomalies in Colombia during the phases of ENSO. During La Niña (El Niño), GS is strong (weak) for the Caribbean and the CHOCO LLJs whereas GS is moderate (strong) for the Orinoco LLJ. Moreover, moisture advection by the Caribbean and CHOCO LLJs exhibit synchrony with HyAns at 0–2 (2–4) months-lags over north-western Colombia and the Orinoco LLJ moisture advection synchronizes with HyAns at similar month-lags over the Amazon region of Colombia. Furthermore, our results suggest a strong (weak) GS between negative (positive) Sea Surface Temperatures (SST) anomalies in the Eastern Pacific and rainfall anomalies in Colombia. In contrast, GS is strong (weak) for positive (negative) SST anomalies in the Central Pacific. Our GS results contribute to advance our understanding on the regional effects of both phases of ENSO in Colombia, whose socio-economical, environmental and ecological impacts cannot be overstated. This work provides a novel approach that reveals new insights into the impact of ENSO on northern South America. © Copyright © 2020 Salas, Poveda, Mesa and Marwan.
  • Item
    Editorial: Recurrence Analysis of Complex Systems Dynamics
    (Lausanne : Frontiers Media, 2020) beim Graben, Peter; Hutt, Axel; Marwan, Norbert; Uhl, Christian; Webber Jr., Charles L.
    [No abstract available]
  • Item
    Joint Trends in Flood Magnitudes and Spatial Extents Across Europe
    (Hoboken, NJ [u.a.] : Wiley, 2020) Kemter, Matthias; Merz, Bruno; Marwan, Norbert; Vorogushyn, Sergiy; Blöschl, Günter
    The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management. ©2020. The Authors.
  • Item
    Recurrence analysis of extreme event-like data
    (Katlenburg-Lindau : European Geophysical Society, 2021) Banerjee, Abhirup; Goswami, Bedartha; Hirata, Yoshito; Eroglu, Deniz; Merz, Bruno; Kurths, Jürgen; Marwan, Norbert
    The identification of recurrences at various timescales in extreme event-like time series is challenging because of the rare occurrence of events which are separated by large temporal gaps. Most of the existing time series analysis techniques cannot be used to analyze an extreme event-like time series in its unaltered form. The study of the system dynamics by reconstruction of the phase space using the standard delay embedding method is not directly applicable to event-like time series as it assumes a Euclidean notion of distance between states in the phase space. The edit distance method is a novel approach that uses the point-process nature of events. We propose a modification of edit distance to analyze the dynamics of extreme event-like time series by incorporating a nonlinear function which takes into account the sparse distribution of extreme events and utilizes the physical significance of their temporal pattern. We apply the modified edit distance method to event-like data generated from point process as well as flood event series constructed from discharge data of the Mississippi River in the USA and compute their recurrence plots. From the recurrence analysis, we are able to quantify the deterministic properties of extreme event-like data. We also show that there is a significant serial dependency in the flood time series by using the random shuffle surrogate method.