Search Results

Now showing 1 - 2 of 2
  • Item
    Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Riedel, Nils; Fuller, Dorian Q.; Marwan, Norbert; Poretschkin, Constantin; Basavaiah, Nathani; Menzel, Philip; Ratnam, Jayashree; Prasad, Sushma; Sachse, Dirk; Sankaran, Mahesh; Sarkar, Saswati; Stebich, Martina
    An unresolved issue in the vegetation ecology of the Indian subcontinent is whether its savannas, characterized by relatively open formations of deciduous trees in C4-grass dominated understories, are natural or anthropogenic. Historically, these ecosystems have widely been regarded as anthropogenic-derived, degraded descendants of deciduous forests. Despite recent work showing that modern savannas in the subcontinent fall within established bioclimatic envelopes of extant savannas elsewhere, the debate persists, at least in part because the regions where savannas occur also have a long history of human presence and habitat modification. Here we show for the first time, using multiple proxies for vegetation, climate and disturbances from high-resolution, well-dated lake sediments from Lonar Crater in peninsular India, that neither anthropogenic impact nor fire regime shifts, but monsoon weakening during the past ~ 6.0 kyr cal. BP, drove the expansion of savanna at the expense of forests in peninsular India. Our results provide unambiguous evidence for a climate-induced origin and spread of the modern savannas of peninsular India at around the mid-Holocene. We further propose that this savannization preceded and drove the introduction of agriculture and development of sedentism in this region, rather than vice-versa as has often been assumed.
  • Item
    Recurrence flow measure of nonlinear dependence
    (Berlin ; Heidelberg : Springer, 2022) Braun, Tobias; Kraemer, K. Hauke; Marwan, Norbert
    Couplings in complex real-world systems are often nonlinear and scale dependent. In many cases, it is crucial to consider a multitude of interlinked variables and the strengths of their correlations to adequately fathom the dynamics of a high-dimensional nonlinear system. We propose a recurrence-based dependence measure that quantifies the relationship between multiple time series based on the predictability of their joint evolution. The statistical analysis of recurrence plots (RPs) is a powerful framework in nonlinear time series analysis that has proven to be effective in addressing many fundamental problems, e.g., regime shift detection and identification of couplings. The recurrence flow through an RP exploits artifacts in the formation of diagonal lines, a structure in RPs that reflects periods of predictable dynamics. Using time-delayed variables of a deterministic uni-/multivariate system, lagged dependencies with potentially many time scales can be captured by the recurrence flow measure. Given an RP, no parameters are required for its computation. We showcase the scope of the method for quantifying lagged nonlinear correlations and put a focus on the delay selection problem in time-delay embedding which is often used for attractor reconstruction. The recurrence flow measure of dependence helps to identify non-uniform delays and appears as a promising foundation for a recurrence-based state space reconstruction algorithm.