Search Results

Now showing 1 - 10 of 21
  • Item
    Frequency spectrum recurrence analysis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Ladeira, Guênia; Marwan, Norbert; Destro-Filho, João-Batista; Davi Ramos, Camila; Lima, Gabriela
    In this paper, we present the new frequency spectrum recurrence analysis technique by means of electro-encephalon signals (EES) analyses. The technique is suitable for time series analysis with noise and disturbances. EES were collected, and alpha waves of the occipital region were analysed by comparing the signals from participants in two states, eyes open and eyes closed. Firstly, EES were characterized and analysed by means of techniques already known to compare with the results of the innovative technique that we present here. We verified that, standard recurrence quantification analysis by means of EES time series cannot statistically distinguish the two states. However, the new frequency spectrum recurrence quantification exhibit quantitatively whether the participants have their eyes open or closed. In sequence, new quantifiers are created for analysing the recurrence concentration on frequency bands. These analyses show that EES with similar frequency spectrum have different recurrence levels revealing different behaviours of the nervous system. The technique can be used to deepen the study on depression, stress, concentration level and other neurological issues and also can be used in any complex system.
  • Item
    Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Riedel, Nils; Fuller, Dorian Q.; Marwan, Norbert; Poretschkin, Constantin; Basavaiah, Nathani; Menzel, Philip; Ratnam, Jayashree; Prasad, Sushma; Sachse, Dirk; Sankaran, Mahesh; Sarkar, Saswati; Stebich, Martina
    An unresolved issue in the vegetation ecology of the Indian subcontinent is whether its savannas, characterized by relatively open formations of deciduous trees in C4-grass dominated understories, are natural or anthropogenic. Historically, these ecosystems have widely been regarded as anthropogenic-derived, degraded descendants of deciduous forests. Despite recent work showing that modern savannas in the subcontinent fall within established bioclimatic envelopes of extant savannas elsewhere, the debate persists, at least in part because the regions where savannas occur also have a long history of human presence and habitat modification. Here we show for the first time, using multiple proxies for vegetation, climate and disturbances from high-resolution, well-dated lake sediments from Lonar Crater in peninsular India, that neither anthropogenic impact nor fire regime shifts, but monsoon weakening during the past ~ 6.0 kyr cal. BP, drove the expansion of savanna at the expense of forests in peninsular India. Our results provide unambiguous evidence for a climate-induced origin and spread of the modern savannas of peninsular India at around the mid-Holocene. We further propose that this savannization preceded and drove the introduction of agriculture and development of sedentism in this region, rather than vice-versa as has often been assumed.
  • Item
    Special Issue “Trends in recurrence analysis of dynamical systems”
    (Berlin ; Heidelberg : Springer, 2023) Marwan, Norbert; Webber, Charles L.; Rysak, Andrzej
    [No abstract available]
  • Item
    Predicting the data structure prior to extreme events from passive observables using echo state network
    (Lausanne : Frontiers Media, 2022) Banerjee, Abhirup; Mishra, Arindam; Dana, Syamal K.; Hens, Chittaranjan; Kapitaniak, Tomasz; Kurths, Jürgen; Marwan, Norbert
    Extreme events are defined as events that largely deviate from the nominal state of the system as observed in a time series. Due to the rarity and uncertainty of their occurrence, predicting extreme events has been challenging. In real life, some variables (passive variables) often encode significant information about the occurrence of extreme events manifested in another variable (active variable). For example, observables such as temperature, pressure, etc., act as passive variables in case of extreme precipitation events. These passive variables do not show any large excursion from the nominal condition yet carry the fingerprint of the extreme events. In this study, we propose a reservoir computation-based framework that can predict the preceding structure or pattern in the time evolution of the active variable that leads to an extreme event using information from the passive variable. An appropriate threshold height of events is a prerequisite for detecting extreme events and improving the skill of their prediction. We demonstrate that the magnitude of extreme events and the appearance of a coherent pattern before the arrival of the extreme event in a time series affect the prediction skill. Quantitatively, we confirm this using a metric describing the mean phase difference between the input time signals, which decreases when the magnitude of the extreme event is relatively higher, thereby increasing the predictability skill.
  • Item
    Generalized Synchronization Between ENSO and Hydrological Variables in Colombia: A Recurrence Quantification Approach
    (Lausanne : Frontiers Media, 2020) Salas, Hernán D.; Poveda, Germán; Mesa, Óscar J.; Marwan, Norbert
    We use Recurrence Quantification Analysis (RQA) to study features of Generalized Synchronization (GS) between El Niño-Southern Oscillation (ENSO) and monthly hydrological anomalies (HyAns) of rainfall and streamflows in Colombia. To that end, we check the sensitivity of the RQA concerning diverse HyAns estimation methods, which constitutes a fundamental procedure for any climatological analysis at inter-annual timescales. In general, the GS and its sensitivity to HyAns methods are quantified by means of time-lagged joint recurrence analysis. Then, we link the GS results with the dynamics of major physical mechanisms that modulate Colombia's hydroclimatology, including the Caribbean, the CHOCO and the Orinoco Low-Level Jets (LLJs), and the Cross-Equatorial Flow (CEF) over northwestern Amazonia (southern Colombia). Our findings show that RQA exhibits significant differences depending on the HyAns methods. GS results are similar for the HyAns methods with variable annual cycle but the time-lags seem to be sensitive. On the other hand, our results make evident that HyAns in the Pacific, Caribbean, and Andean regions of Colombia exhibit strong (weak) GS with the ENSO signal during La Niña (El Niño), when hydrological anomalies are positive (negative). Results from the GS analysis allow us to identify spatial patterns of non-linear dependence between ENSO and the Colombian's climatology. The mentioned moisture transport sources constitute the interdependence mechanism and contribute to explain hydrological anomalies in Colombia during the phases of ENSO. During La Niña (El Niño), GS is strong (weak) for the Caribbean and the CHOCO LLJs whereas GS is moderate (strong) for the Orinoco LLJ. Moreover, moisture advection by the Caribbean and CHOCO LLJs exhibit synchrony with HyAns at 0–2 (2–4) months-lags over north-western Colombia and the Orinoco LLJ moisture advection synchronizes with HyAns at similar month-lags over the Amazon region of Colombia. Furthermore, our results suggest a strong (weak) GS between negative (positive) Sea Surface Temperatures (SST) anomalies in the Eastern Pacific and rainfall anomalies in Colombia. In contrast, GS is strong (weak) for positive (negative) SST anomalies in the Central Pacific. Our GS results contribute to advance our understanding on the regional effects of both phases of ENSO in Colombia, whose socio-economical, environmental and ecological impacts cannot be overstated. This work provides a novel approach that reveals new insights into the impact of ENSO on northern South America. © Copyright © 2020 Salas, Poveda, Mesa and Marwan.
  • Item
    Interconnection between the Indian and the East Asian summer monsoon: Spatial synchronization patterns of extreme rainfall events
    (Chichester [u.a.] : Wiley, 2022) Gupta, Shraddha; Su, Zhen; Boers, Niklas; Kurths, Jürgen; Marwan, Norbert; Pappenberger, Florian
    A deeper understanding of the intricate relationship between the two components of the Asian summer monsoon (ASM)—the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM)—is crucial to improve the subseasonal forecasting of extreme precipitation events. Using an innovative complex network-based approach, we identify two dominant synchronization pathways between ISM and EASM—a southern mode between the Arabian Sea and southeastern China occurring in June, and a northern mode between the core ISM zone and northern China which peaks in July—and their associated large-scale atmospheric circulation patterns. Furthermore, we discover that certain phases of the Madden–Julian oscillation and the lower frequency mode of the boreal summer intraseasonal oscillation (BSISO) seem to favour the overall synchronization of extreme rainfall events between ISM and EASM while the higher-frequency mode of the BSISO is likely to support the shifting between the modes of ISM–EASM connection.
  • Item
    Multiband Wavelet Age Modeling for a ∼293 m (∼600 kyr) Sediment Core From Chew Bahir Basin, Southern Ethiopian Rift
    (Lausanne : Frontiers Media, 2021) Duesing, Walter; Berner, Nadine; Deino, Alan L.; Foerster, Verena; Kraemer, K. Hauke; Marwan, Norbert; Trauth, Martin H.
    The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits requires sophisticated tuning techniques that can accommodate continuous long-term changes in sedimentation rates. However, most tuning methods use stationary filters that are unable to take into account such long-term variations in accumulation rates. To overcome this problem we present herein a new multiband wavelet age modeling (MUBAWA) technique that is particularly suitable for such situations and demonstrate its use on a 293 m composite core from the Chew Bahir basin, southern Ethiopian rift. In contrast to traditional tuning methods, which use a single, defined bandpass filter, the new method uses an adaptive bandpass filter that adapts to changes in continuous spatial frequency evolution paths in a wavelet power spectrum, within which the wavelength varies considerably along the length of the core due to continuous changes in long-term sedimentation rates. We first applied the MUBAWA technique to a synthetic data set before then using it to establish an age model for the approximately 293 m long composite core from the Chew Bahir basin. For this we used the 2nd principal component of color reflectance values from the sediment, which showed distinct cycles with wavelengths of 10–15 and of ∼40 m that were probably a result of the influence of orbital cycles. We used six independent 40Ar/39Ar ages from volcanic ash layers within the core to determine an approximate spatial frequency range for the orbital signal. Our results demonstrate that the new wavelet-based age modeling technique can significantly increase the accuracy of tuned age models.
  • Item
    Averaged recurrence quantification analysis: Method omitting the recurrence threshold choice
    (Berlin ; Heidelberg : Springer, 2022) Pánis, Radim; Adámek, Karel; Marwan, Norbert
    Recurrence quantification analysis (RQA) is a well established method of nonlinear data analysis. In this work, we present a new strategy for an almost parameter-free RQA. The approach finally omits the choice of the threshold parameter by calculating the RQA measures for a range of thresholds (in fact recurrence rates). Specifically, we test the ability of the RQA measure determinism, to sort data with respect to their signal to noise ratios. We consider a periodic signal, simple chaotic logistic equation, and Lorenz system in the tested data set with different and even very small signal-to-noise ratios of lengths 10 2, 10 3, 10 4, and 10 5. To make the calculations possible, a new effective algorithm was developed for streamlining of the numerical operations on graphics processing unit (GPU).
  • Item
    Trends in recurrence analysis of dynamical systems
    (Les Ulis : EDP Sciences, 2023) Marwan, Norbert; Kraemer, K. Hauke
    The last decade has witnessed a number of important and exciting developments that had been achieved for improving recurrence plot-based data analysis and to widen its application potential. We will give a brief overview about important and innovative developments, such as computational improvements, alternative recurrence definitions (event-like, multiscale, heterogeneous, and spatio-temporal recurrences) and ideas for parameter selection, theoretical considerations of recurrence quantification measures, new recurrence quantifiers (e.g. for transition detection and causality detection), and correction schemes. New perspectives have recently been opened by combining recurrence plots with machine learning. We finally show open questions and perspectives for futures directions of methodical research.
  • Item
    Complex systems approaches for Earth system data analysis
    (Bristol : IOP Publ., 2021) Boers, Niklas; Kurths, Jürgen; Marwan, Norbert
    Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many social, economic, and technological systems. The defining characteristics of complex systems imply that their dynamics can often only be captured from the analysis of simulated or observed data. Here, we summarize recent advances in nonlinear data analysis of both simulated and real-world complex systems, with a focus on recurrence analysis for the investigation of individual or small sets of time series, and complex networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the recent success of these two key concepts of complexity science with an emphasis on applications for the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present several prominent examples where challenging problems in Earth system and climate science have been successfully addressed using recurrence analysis and complex networks. We outline several open questions for future lines of research in the direction of data-based complex system analysis, again with a focus on applications in the Earth sciences, and suggest possible combinations with suitable machine learning approaches. Beyond Earth system analysis, these methods have proven valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or engineering.