Search Results

Now showing 1 - 10 of 13
  • Item
    See–saw relationship of the Holocene East Asian–Australian summer monsoon
    (London : Nature Publishing Group, 2016) Eroglu, Deniz; McRobie, Fiona H.; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F.M.; Marwan, Norbert; Kurths, Jürgen
    The East Asian–Indonesian–Australian summer monsoon (EAIASM) links the Earth’s hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian–Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could ‘lock in’ possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see–saw relationship over the last 9,000 years—with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime.
  • Item
    In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots
    (Singapore [u.a.] : World Scientific Publ. Co., 2018) Wendi, Dadiyorto; Marwan, Norbert; Merz, Bruno
    As an effort to reduce parameter uncertainties in constructing recurrence plots, and in particular to avoid potential artefacts, this paper presents a technique to derive artefact-safe region of parameter sets. This technique exploits both deterministic (incl. chaos) and stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is useful when the evaluated signal is known to be deterministic. This study focuses on the recurrence plot generated from the reconstructed phase space in order to represent many real application scenarios when not all variables to describe a system are available (data scarcity). The technique involves random shuffling of the original signal to destroy its original deterministic characteristics. Its purpose is to evaluate whether the determinism values of the original and the shuffled signal remain closely together, and therefore suggesting that the recurrence plot might comprise artefacts. The use of such determinism-sensitive region shall be accompanied by standard embedding optimization approaches, e.g. using indices like false nearest neighbor and mutual information, to result in a more reliable recurrence plot parameterization.
  • Item
    Pacific climate reflected in Waipuna Cave drip water hydrochemistry
    (Munich : EGU, 2020) Nava-Fernandez, Cinthya; Hartland, Adam; Gázquez, Fernando; Kwiecien, Ola; Marwan, Norbert; Fox, Bethany; Hellstrom, John; Pearson, Andrew; Ward, Brittany; French, Amanda; Hodell, David A.; Immenhauser, Adrian; Breitenbach, Sebastian F.M.
    Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the Southern Westerlies and the El Niño-Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to assure the quality of ongoing palaeo-environmental reconstructions from this cave. Drip water from 10 drip sites was collected at roughly monthly intervals for a period of ca. 3 years for isotopic (d18O, dD, d-excess parameter, d17O, and 17Oexcess) and elemental (Mg=Ca and Sr=Ca) analysis. The monitoring included spot measurements of drip rates and cave air CO2 concentration. Cave air temperature and drip rates were also continuously recorded by automatic loggers. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics, we identified three types of discharge associated with hydrological routing in Waipuna Cave: (i) type 1-diffuse flow, (ii) type 2-fracture flow, and (iii) type 3-combined flow. Drip water isotopes do not reflect seasonal variability but show higher values during severe drought. Drip water d18O values are characterised by small variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough homogenisation in the epikarst. Mg=Ca and Sr=Ca ratios in drip waters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December-February), reflecting drier conditions and a lack of effec tive infiltration, and is weakest during the wet austral winter (July-September). The Sr=Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent or incongruent host rock dissolution, which manifests itself in lower Sr=Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide a valuable baseline for the rigorous interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes. © 2020 Author(s).
  • Item
    Optimal design of hydrometric station networks based on complex network analysis
    (Munich : EGU, 2020) Agarwal, Ankit; Marwan, Norbert; Maheswaran, Rathinasamy; Ozturk, Ugur; Kurths, Jürgen; Merz, Bruno
    Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail © Author(s) 2020.
  • Item
    Generalized Synchronization Between ENSO and Hydrological Variables in Colombia: A Recurrence Quantification Approach
    (Lausanne : Frontiers Media, 2020) Salas, Hernán D.; Poveda, Germán; Mesa, Óscar J.; Marwan, Norbert
    We use Recurrence Quantification Analysis (RQA) to study features of Generalized Synchronization (GS) between El Niño-Southern Oscillation (ENSO) and monthly hydrological anomalies (HyAns) of rainfall and streamflows in Colombia. To that end, we check the sensitivity of the RQA concerning diverse HyAns estimation methods, which constitutes a fundamental procedure for any climatological analysis at inter-annual timescales. In general, the GS and its sensitivity to HyAns methods are quantified by means of time-lagged joint recurrence analysis. Then, we link the GS results with the dynamics of major physical mechanisms that modulate Colombia's hydroclimatology, including the Caribbean, the CHOCO and the Orinoco Low-Level Jets (LLJs), and the Cross-Equatorial Flow (CEF) over northwestern Amazonia (southern Colombia). Our findings show that RQA exhibits significant differences depending on the HyAns methods. GS results are similar for the HyAns methods with variable annual cycle but the time-lags seem to be sensitive. On the other hand, our results make evident that HyAns in the Pacific, Caribbean, and Andean regions of Colombia exhibit strong (weak) GS with the ENSO signal during La Niña (El Niño), when hydrological anomalies are positive (negative). Results from the GS analysis allow us to identify spatial patterns of non-linear dependence between ENSO and the Colombian's climatology. The mentioned moisture transport sources constitute the interdependence mechanism and contribute to explain hydrological anomalies in Colombia during the phases of ENSO. During La Niña (El Niño), GS is strong (weak) for the Caribbean and the CHOCO LLJs whereas GS is moderate (strong) for the Orinoco LLJ. Moreover, moisture advection by the Caribbean and CHOCO LLJs exhibit synchrony with HyAns at 0–2 (2–4) months-lags over north-western Colombia and the Orinoco LLJ moisture advection synchronizes with HyAns at similar month-lags over the Amazon region of Colombia. Furthermore, our results suggest a strong (weak) GS between negative (positive) Sea Surface Temperatures (SST) anomalies in the Eastern Pacific and rainfall anomalies in Colombia. In contrast, GS is strong (weak) for positive (negative) SST anomalies in the Central Pacific. Our GS results contribute to advance our understanding on the regional effects of both phases of ENSO in Colombia, whose socio-economical, environmental and ecological impacts cannot be overstated. This work provides a novel approach that reveals new insights into the impact of ENSO on northern South America. © Copyright © 2020 Salas, Poveda, Mesa and Marwan.
  • Item
    Editorial: Recurrence Analysis of Complex Systems Dynamics
    (Lausanne : Frontiers Media, 2020) beim Graben, Peter; Hutt, Axel; Marwan, Norbert; Uhl, Christian; Webber Jr., Charles L.
    [No abstract available]
  • Item
    Joint Trends in Flood Magnitudes and Spatial Extents Across Europe
    (Hoboken, NJ [u.a.] : Wiley, 2020) Kemter, Matthias; Merz, Bruno; Marwan, Norbert; Vorogushyn, Sergiy; Blöschl, Günter
    The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management. ©2020. The Authors.
  • Item
    Reliability of inference of directed climate networks using conditional mutual information
    (Basel : MDPI, 2013) Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Runge, Jakob; Marwan, Norbert; Kurths, Jürgen; Paluš, Milan
    Across geosciences, many investigated phenomena relate to specific complex systems consisting of intricately intertwined interacting subsystems. Such dynamical complex systems can be represented by a directed graph, where each link denotes an existence of a causal relation, or information exchange between the nodes. For geophysical systems such as global climate, these relations are commonly not theoretically known but estimated from recorded data using causality analysis methods. These include bivariate nonlinear methods based on information theory and their linear counterpart. The trade-off between the valuable sensitivity of nonlinear methods to more general interactions and the potentially higher numerical reliability of linear methods may affect inference regarding structure and variability of climate networks. We investigate the reliability of directed climate networks detected by selected methods and parameter settings, using a stationarized model of dimensionality-reduced surface air temperature data from reanalysis of 60-year global climate records. Overall, all studied bivariate causality methods provided reproducible estimates of climate causality networks, with the linear approximation showing higher reliability than the investigated nonlinear methods. On the example dataset, optimizing the investigated nonlinear methods with respect to reliability increased the similarity of the detected networks to their linear counterparts, supporting the particular hypothesis of the near-linearity of the surface air temperature reanalysis data.
  • Item
    Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach
    (Katlenburg-Lindau : European Geophysical Society, 2019) Kurths, Jürgen; Agarwal, Ankit; Shukla, Roopam; Marwan, Norbert; Rathinasamy, Maheswaran; Caesar, Levke; Krishnan, Raghavan; Merz, Bruno
    A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting. © 2019 Author(s).
  • Item
    Network-based identification and characterization of teleconnections on different scales
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Agarwal, Ankit; Caesar, Levke; Marwan, Norbert; Maheswaran, Rathinasamy; Merz, Bruno; Kurths, Jürgen
    Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole.