Search Results

Now showing 1 - 2 of 2
  • Item
    Mapping High-Temperature Superconductors—A Scientometric Approach
    (New York, NY : Springer, 2008) Barth, Andreas; Marx, Werner
    This study has been carried out to analyze the research field of high-temperature superconductivity and to demonstrate the potential of modern databases and search systems for generating meta-information. The alkaline earth (A2) rare earth (RE) cuprate high-temperature superconductors as a typical inorganic compound family and the corresponding literature were analyzed by scientometric methods. The time dependent overall number of articles and patents and of the publications related to specific compound subsets and subject categories are given. The data reveal a significant decrease of basic research activity in this research field. The A2 RE cuprate species covered by the CAS compound file were analyzed with respect to the occurrence of specific elements in order to visualize known and unknown substances and to identify characteristic patterns. The quaternary and quinternary cuprates were selected and the number of compound species as a function of specific combinations of A2 and RE elements is given. The Cu/O and RE/A2 ratios of the quaternary cuprate species as a function of A2 and RE atoms are shown. In addition, the research landscape of the MgB2 related publications was established using STN AnaVist, an analysis tool recently developed by STN International.
  • Item
    Addition of Iridium to the Biopolymer Mediated Synthesis of YBa2Cu3O7 δ
    (Amsterdam [u.a.] : Elsevier, 2012) Wimbush, Stuart C.; Marx, Werner; Barth, Andreas; Hall, Simon R.
    This work represents the first study into the addition of iridium into the solgel synthesis of the high temperature superconductor YBa2Cu3O7δ (Y123). Through a biopolymermediated synthetic approach, the homogeneous nature of the precursor sol and the preferred nucleation and growth of Y123 phases allow for a high yield of superconducting nanoparticles with no suppression of the superconducting critical temperature, even at high levels (40 wt%) of iridium addition. We attribute this to iridium not substituting into the Y123 crystal lattice, instead forming an associate phase.