Search Results

Now showing 1 - 3 of 3
  • Item
    Influence of redox stress on crosstalk between fibroblasts and keratinocytes
    (Basel : MDPI, 2021) Bhartiya, Pradeep; Masur, Kai; Shome, Debarati; Kaushik, Neha; Nguyen, Linh N.; Kaushik, Nagendra Kumar; Choi, Eun Ha
    Although the skin is constantly subjected to endogenous and exogenous stress, it maintains a homeostatic state through wound repair and regeneration pathways. Treatment for skin diseases and injury requires a significant understanding of the various mechanisms and interactions that occur within skin cells. Keratinocytes and fibroblasts interact with each other and act as key players in the repair process. Although fibroblasts and keratinocytes are widely studied in wound healing and skin remodeling under different conditions, the influence of redox stress on keratinocyte-fibroblast crosstalk has not been thoroughly investigated. In this study, we used cold atmospheric plasma (CAP) to generate and deliver oxidative stress to keratinocytes and fibroblasts and to assess its impact on their interactions. To this end, we used a well-established in vitro 3D co-culture model imitating a realistic scenario. Our study shows that low CAP exposure is biocompatible and does not affect the viability or energetics of fibroblasts and keratinocytes. Exposure to low doses of CAP enhanced the proliferation rate of cells and stimulated the expression of key genes (KGF, MMP2, GMCSF, IL-6, and IL-8) in fibroblasts, indicating the activation and initiation of the skin repair process. Additionally, enhanced migration was observed under co-culture conditions under the given redox stress conditions, and expression of the upstream regulator and the effectors of the Hippo pathway (YAP and CYR61, respectively), which are associated with enhanced migration, were elevated. Overall, this study reinforces the application of CAP and redox stress in skin repair physiology.
  • Item
    Uv absorption spectroscopy for the diffusion of plasma-generated reactive species through a skin model
    (Basel : MDPI, 2021) Ki, Se Hoon; Masur, Kai; Baik, Ku Youn; Choi, Eun Ha
    Skin applications of non-thermal atmospheric pressure plasma (NTAPP) have been at-tracting attention from medical and cosmetic aspects. The reactive species generated from plasma sources have been known to play important roles in the skin. For proper applications, it is essential to know how they diffuse into the skin. In this study, the penetration of active species from NTAPP through a skin model was analyzed by UV absorption spectroscopy. The diffusions of hydrogen peroxide, nitrite, and nitrate were quantified through curve fitting. We utilized an agarose gel to mimic epidermis and dermis layers, and we used a lipid film or a pig skin sample to mimic the stratum corneum (SC). The diffusion characteristics of reactive species through this skin model and the limitations of this method were discussed.
  • Item
    Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices
    (Basel : MDPI, 2022) Chaerony Siffa, Ihda; Gerling, Torsten; Masur, Kai; Eschenburg, Christian; Starkowski, Frank; Emmert, Steffen
    The emerging use of low-temperature plasma in medicine, especially in wound treatment, calls for a better way of documenting the treatment parameters. This paper describes the development of a mobile sensory device (referred to as MSD) that can be used during the treatment to ease the documentation of important parameters in a streamlined process. These parameters include the patient’s general information, plasma source device used in the treatment, plasma treatment time, ambient humidity and temperature. MSD was developed as a standalone Raspberry Pi-based version and attachable module version for laptops and tablets. Both versions feature a user-friendly GUI, temperature–humidity sensor, microphone, treatment report generation and export. For the logging of plasma treatment time, a sound-based plasma detection system was developed, initially for three medically certified plasma source devices: kINPen® MED, plasma care®, and PlasmaDerm® Flex. Experimental validation of the developed detection system shows accurate and reliable detection is achievable at 5 cm measurement distance in quiet and noisy environments for all devices. All in all, the developed tool is a first step to a more automated, integrated, and streamlined approach of plasma treatment documentation that can help prevent user variability.